Vi bøger
Levering: 1 - 2 hverdage
Forlænget returret til d. 31. januar 2025

A Unified Theory of Neural Network Learning - Priya Desai - Bog

Bag om A Unified Theory of Neural Network Learning

A unified theory of neural network learning is a comprehensive framework that can explain how all types of neural networks learn, from the simplest perceptrons to the most complex deep learning models. It would provide a unified understanding of the different learning algorithms used in neural networks, as well as the different types of data that neural networks can learn from. Such a theory would have a number of benefits. First, it would help us to design better neural networks. By understanding how neural networks learn, we can develop more efficient and effective training algorithms. Second, a unified theory of neural network learning would help us to better understand the human brain. The human brain is essentially a neural network, and by understanding how neural networks learn, we can gain insights into how the brain learns and processes information. There are a number of challenges that need to be addressed in order to develop a unified theory of neural network learning. One challenge is the diversity of neural networks. There are many different types of neural networks, each with its own unique architecture and learning algorithm. It is not clear how to develop a single theory that can account for all of these different types of neural networks.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9788119855988
  • Indbinding:
  • Paperback
  • Sideantal:
  • 88
  • Udgivet:
  • 15. oktober 2023
  • Størrelse:
  • 152x6x229 mm.
  • Vægt:
  • 142 g.
  • 8-11 hverdage.
  • 16. januar 2025
På lager
Forlænget returret til d. 31. januar 2025
  •  

    Kan ikke leveres inden jul.
    Køb nu og print et gavebevis

Normalpris

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af A Unified Theory of Neural Network Learning

A unified theory of neural network learning is a comprehensive framework that can explain how all types of neural networks learn, from the simplest perceptrons to the most complex deep learning models. It would provide a unified understanding of the different learning algorithms used in neural networks, as well as the different types of data that neural networks can learn from.
Such a theory would have a number of benefits. First, it would help us to design better neural networks. By understanding how neural networks learn, we can develop more efficient and effective training algorithms. Second, a unified theory of neural network learning would help us to better understand the human brain. The human brain is essentially a neural network, and by understanding how neural networks learn, we can gain insights into how the brain learns and processes information.
There are a number of challenges that need to be addressed in order to develop a unified theory of neural network learning. One challenge is the diversity of neural networks. There are many different types of neural networks, each with its own unique architecture and learning algorithm. It is not clear how to develop a single theory that can account for all of these different types of neural networks.

Brugerbedømmelser af A Unified Theory of Neural Network Learning



Find lignende bøger
Bogen A Unified Theory of Neural Network Learning findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.