Vi bøger
Levering: 1 - 2 hverdage

Bøger i Synthesis Lectures on Mathematics & Statistics serien

Filter
Filter
Sorter efterSorter Serie rækkefølge
  • af Daniel Arrigo
    472,95 kr.

    This textbook is an introduction to the methods needed to solve partial differential equations (PDEs). Readers are introduced to PDEs that come from a variety of fields in engineering and the natural sciences. The chapters include the following topics: First Order PDEs, Second Order PDEs, Fourier Series, Separation of Variables, the Fourier Transform, and higher dimensional problems. Readers are guided through these chapters where techniques for solving first and second order PDEs are introduced. Each chapter ends with series of exercises to facilitate learning as well as illustrate the material presented in each chapter.

  • af Erdal Karapinar
    457,95 - 484,95 kr.

    This book presents fixed point theory, one of the crucial tools in applied mathematics, functional analysis, and topology, which has been used to solve distinct real-world problems in computer science, engineering, and physics. The authors begin with an overview of the extension of metric spaces. Readers are introduced to general fixed-point theorems while comparing and contrasting important and insignificant metric spaces. The book is intended to be self-contained and serves as a unique resource for researchers in various disciplines.

  • af Mohammad Enayati
    376,95 - 397,95 kr.

  • af Charalambos A. Charalambides
    332,95 kr.

    This book is devoted to the study of multivariate discrete q-distributions, which is greatly facilitated by existing multivariate q-sequences and q-functions. Classical multivariate discrete distributions are defined on a sequence of independent and identically distributed Bernoulli trials, with either being a success of a certain rank (level) or a failure. The author relaxes the assumption that the probability of success of a trial is constant by assuming that it varies geometrically with the number of trials and/or the number of successes. The latter is advantageous in the sense that it permits incorporating the experience gained from the previous trials and/or successes, which leads to multivariate discrete q-distributions. Furthermore, q-multinomial and negative q-multinomial formulae are obtained. Next, the book addresses q-multinomial and negative q-multinomial distributions of the first and second kind. The author also examines multiple q-Polya urn model, multivariate q-Polya and inverse q-Polya distributions. Presents definitions and theorems that highlight key concepts and worked examples to illustrate the various applicationsContains numerous exercises at varying levels of difficulty that consolidate the presented concepts and resultsIncludes hints and answers to all exercises via the appendix and is supplemented with an Instructor's Solution Manual

  • af Daniel Arrigo
    332,95 - 360,95 kr.

    This textbook provides an introduction to methods for solving nonlinear partial differential equations (NLPDEs). After the introduction of several PDEs drawn from science and engineering, readers are introduced to techniques to obtain exact solutions of NLPDEs. The chapters include the following topics: Nonlinear PDEs are Everywhere; Differential Substitutions; Point and Contact Transformations; First Integrals; and Functional Separability. Readers are guided through these chapters and are provided with several detailed examples. Each chapter ends with a series of exercises illustrating the material presented in each chapter. This Second Edition includes a new method of generating contact transformations and focuses on a solution method (parametric Legendre transformations) to solve a particular class of two nonlinear PDEs.

  • af Chao Wang
    452,95 - 614,95 kr.

    This book systematically establishes the almost periodic theory of dynamic equations and presents applications on time scales in fuzzy mathematics and uncertainty theory. The authors introduce a new division of fuzzy vectors depending on a determinant algorithm and develop a theory of almost periodic fuzzy multidimensional dynamic systems on time scales. Several applications are studied; in particular, a new type of fuzzy dynamic systems called fuzzy q-dynamic systems (i.e. fuzzy quantum dynamic systems) is presented. The results are not only effective on classical fuzzy dynamic systems, including their continuous and discrete situations, but are also valid for other fuzzy multidimensional dynamic systems on various hybrid domains. In an effort to achieve more accurate analysis in real world applications, the authors propose a number of uncertain factors in the theory. As such, fuzzy dynamical models, interval-valued functions, differential equations, fuzzy-valued differential equations, and their applications to dynamic equations on time scales are considered.

  • af Mircea Neagu
    452,95 - 457,95 kr.

    This book studies a category of mathematical objects called Hamiltonians, which are dependent on both time and momenta. The authors address the development of the distinguished geometrization on dual 1-jet spaces for time-dependent Hamiltonians, in contrast with the time-independent variant on cotangent bundles. Two parts are presented to include both geometrical theory and the applicative models: Part One: Time-dependent Hamilton Geometry and Part Two: Applications to Dynamical Systems, Economy and Theoretical Physics. The authors present 1-jet spaces and their duals as appropriate fundamental ambient mathematical spaces used to model classical and quantum field theories. In addition, the authors present dual jet Hamilton geometry as a distinct metrical approach to various interdisciplinary problems.

  • af Svetlin Georgiev
    360,95 kr.

  • af Arturo Portnoy
    360,95 kr.

    This book explores the relationships between music, the sciences, and mathematics, both ancient and modern, with a focus on the big picture for a general audience as opposed to delving into very technical details. The language of music is deciphered through the language of mathematics. Readers are shown how apparently unrelated areas of knowledge complement each other and in fact propel each other¿s advancement. The presentation as well as the collection of topics covered throughout is unique and serves to encourage exploration and also, very concretely, illustrates the cross- and multidisciplinary nature of knowledge. Inspired by an introductory, multidisciplinary course, the author explores the relationships between the arts, sciences, and mathematics in the realm of music. The book has no prerequisites; rather it aims to give a broad overview and achieve the integration of the three presented themes. Mathematical tools are introduced and used to explain various aspects of music theory, and the author illustrates how, without mathematics, music could not have been developed.

  • af Alexander G. Ramm
    252,95 kr.

    This book revises and expands upon the prior edition, The Navier-Stokes Problem. The focus of this book is to provide a mathematical analysis of the Navier-Stokes Problem (NSP) in R^3 without boundaries. Before delving into analysis, the author begins by explaining the background and history of the Navier-Stokes Problem. This edition includes new analysis and an a priori estimate of the solution. The estimate proves the contradictory nature of the Navier-Stokes Problem. The author reaches the conclusion that the solution to the NSP with smooth and rapidly decaying data cannot exist for all positive times. By proving the NSP paradox, this book provides a solution to the millennium problem concerning the Navier-Stokes Equations and shows that they are physically and mathematically contradictive.

  • af Viswanathan Arunachalam & Liliana Blanco-Castañeda
    360,95 kr.

    This book provides the essential theoretical tools for stochastic modeling. The authors address the most used models in applications such as Markov chains with discrete-time parameters, hidden Markov chains, Poisson processes, and birth and death processes. This book also presents specific examples with simulation methods that apply the topics to different areas of knowledge. These examples include practical applications, such as modeling the COVID-19 pandemic and animal movement modeling. This book is concise and rigorous, presenting the material in an easily accessible manner that allows readers to learn how to address and solve problems of a stochastic nature.

  • af Shinil Cho
    910,95 kr.

    This book ¿offers step-by-step descriptions of various random systems and explores the world of computer simulations. In addition, this book offers a working introduction to those who want to learn how to create and run Monte Carlo simulations. Monte Carlo simulation has been a powerful computational tool for physics models, and when combined with the programming language Excel, this book is a valuable resource for readers who wish to acquire knowledge that can be applied to more complex systems. Visualization of the simulation results via the Visual Basic built in Microsoft EXCEL is presented as the first step towards the subject. Prior experience with the Excel add-in VBA is kept to a minimum. In addition, a chapter on quantum optimization simulation utilizing Python is added to explore the quantum computation. Readers will gain a fundamental knowledge and techniques of simulation physics, which can be extended to STEM projects and other research projects.

  • af Jeffrey Galkowski & Yaiza Canzani
    692,95 kr.

    This book discusses the modern theory of Laplace eigenfunctions through the lens of a new tool called geodesic beams. The authors provide a brief introduction to the theory of Laplace eigenfunctions followed by an accessible treatment of geodesic beams and their applications to sup norm estimates, L^p estimates, averages, and Weyl laws. Geodesic beams have proven to be a valuable tool in the study of Laplace eigenfunctions, but their treatment is currently spread through a variety of rather technical papers. The authors present a treatment of these tools that is accessible to a wider audience of mathematicians. Readers will gain an introduction to geodesic beams and the modern theory of Laplace eigenfunctions, which will enable them to understand the cutting edge aspects of this theory.

  • af Fabio Bagarello
    452,95 kr.

    This book describes how complex systems from a variety of fields can be modeled using quantum mechanical ideas; from biology and ecology, to sociology and decision-making. Quantum mechanics is traditionally associated with microscopic systems; however, quantum concepts have also been successfully applied to a wide range of macroscopic systems both within and outside physics. The mathematical basis of these models is covered in detail, providing a self-contained and consistent approach. This book provides unique insight into the dynamics of these macroscopic systems and opens new interdisciplinary research frontiers. The authors present an essential resource for researchers in applied mathematics or theoretical physics who are interested in applying quantum mechanics to complex systems in the social, biological or ecological sciences.Describes how complex systems from a variety of fields can be modeled using quantum mechanical ideasProvides insight into the dynamics of macroscopic systems and opens new interdisciplinary research frontiersIntroduces quantum tools needed for the analysis of the dynamical behavior of macroscopic systems

  • af Boris Mordukhovich & Nguyen Mau Nam
    372,95 kr.

  • af Eric Stade & Elisabeth Stade
    360,95 kr.

    This book is intended for a first-semester course in calculus, which begins by posing a question: how do we model an epidemic mathematically? The authors use this question as a natural motivation for the study of calculus and as a context through which central calculus notions can be understood intuitively. The book¿s approach to calculus is contextual and based on the principle that calculus is motivated and elucidated by its relevance to the modeling of various natural phenomena. The authors also approach calculus from a computational perspective, explaining that many natural phenomena require analysis through computer methods. As such, the book also explores some basic programming notions and skills.

  • af Sujaul Chowdhury
    360,95 kr.

    This book provides practical demonstrations of how to carry out definite integrals with Monte Carlo methods using Mathematica. Random variates are sampled by the inverse transform method and the acceptance-rejection method using uniform, linear, Gaussian, and exponential probability distribution functions. A chapter on the application of the Variational Quantum Monte Carlo method to a simple harmonic oscillator is included. These topics are all essential for students of mathematics and physics. The author includes thorough background on each topic covered within the book in order to help readers understand the subject. The book also contains many examples to show how the methods can be applied.

  • af Andrew McEachern
    235,95 kr.

    A problem factory consists of a traditional mathematical analysis of a type of problem that describes many, ideally all, ways that the problems of that type can be cast in a fashion that allows teachers or parents to generate problems for enrichment exercises, tests, and classwork. Some problem factories are easier than others for a teacher or parent to apply, so we also include banks of example problems for users. This text goes through the definition of a problem factory in detail and works through many examples of problem factories. It gives banks of questions generated using each of the examples of problem factories, both the easy ones and the hard ones. This text looks at sequence extension problems (what number comes next?), basic analytic geometry, problems on whole numbers, diagrammatic representations of systems of equations, domino tiling puzzles, and puzzles based on combinatorial graphs. The final chapter previews other possible problem factories.

  • af Rajan Chattamvelli
    484,95 kr.

    This is the second part of our book on continuous statistical distributions. It covers inverse-Gaussian, Birnbaum-Saunders, Pareto, Laplace, central ,,,,2, ,,,,, ,,,,, Weibull, Rayleigh, Maxwell, and extreme value distributions. Important properties of these distribution are documented, and most common practical applications are discussed. This book can be used as a reference material for graduate courses in engineering statistics, mathematical statistics, and econometrics. Professionals and practitioners working in various fields will also find some of the chapters to be useful.Although an extensive literature exists on each of these distributions, we were forced to limit the size of each chapter and the number of references given at the end due to the publishing plan of this book that limits its size. Nevertheless, we gratefully acknowledge the contribution of all those authors whose names have been left out.Some knowledge in introductory algebra and college calculus is assumed throughout the book. Integration is extensively used in several chapters, and many results discussed in Part I (Chapters 1 to 9) of our book are used in this volume.Chapter 10 is on Inverse Gaussian distribution and its extensions. The Birnbaum-Saunders distribution and its extensions along with applications in actuarial sciences is discussed in Chapter 11. Chapter 12 discusses Pareto distribution and its extensions. The Laplace distribution and its applications in navigational errors is discussed in the next chapter. This is followed by central chi-squared distribution and its applications in statistical inference, bioinformatics and genomics. Chapter 15 discusses Student's ,,,, distribution, its extensions and applications in statistical inference. The ,,,, distribution and its applications in statistical inference appears next. Chapter 17 is on Weibull distribution and its applications in geology and reliability engineering. Next two chapters are on Rayleigh and Maxwell distributions and its applications in communications, wind energy modeling, kinetic gas theory, nuclear and thermal engineering, and physical chemistry. The last chapter is on Gumbel distribution, its applications in the law of rare exceedances.Suggestions for improvement are welcome. Please send them to rajan.chattamvelli@vit.ac.in.

  • af Peter J Costa
    492,95 kr.

    This text provides an introduction to the applications and implementations of partial differential equations. The content is structured in three progressive levels which are suited for upper-level undergraduates with background in multivariable calculus and elementary linear algebra (chapters 1-5), first- and second-year graduate students who have taken advanced calculus and real analysis (chapters 6-7), as well as doctoral-level students with an understanding of linear and nonlinear functional analysis (chapters 7-8) respectively. Level one gives readers a full exposure to the fundamental linear partial differential equations of physics. It details methods to understand and solve these equations leading ultimately to solutions of Maxwell's equations. Level two addresses nonlinearity and provides examples of separation of variables, linearizing change of variables, and the inverse scattering transform for select nonlinear partial differential equations. Level three presents rich sources of advanced techniques and strategies for the study of nonlinear partial differential equations, including unique and previously unpublished results. Ultimately the text aims to familiarize readers in applied mathematics, physics, and engineering with some of the myriad techniques that have been developed to model and solve linear and nonlinear partial differential equations.

  • af Manpreet Singh Katari
    197,95 kr.

    Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume that the data is a sample from a population that can be characterized by a specific distribution (e.g., a normal distribution). When the assumption is true, parametric approaches can lead to high confidence predictions. However, in many cases particular distribution assumptions do not hold. In that case, assuming a distribution may yield false conclusions. The companion book Statistics is Easy, gave a (nearly) equation-free introduction to nonparametric (i.e., no distribution assumption) statistical methods. The present book applies data preparation, machine learning, and nonparametric statistics to three quite different life science datasets. We provide the code as applied to each dataset in both R and Python 3. We also include exercises for self-study or classroom use.

  • af Esteban Calviño-Louzao
    252,95 kr.

    Book V completes the discussion of the first four books by treating in some detail the analytic results in elliptic operator theory used previously. Chapters 16 and 17 provide a treatment of the techniques in Hilbert space, the Fourier transform, and elliptic operator theory necessary to establish the spectral decomposition theorem of a self-adjoint operator of Laplace type and to prove the Hodge Decomposition Theorem that was stated without proof in Book II. In Chapter 18, we treat the de Rham complex and the Dolbeault complex, and discuss spinors. In Chapter 19, we discuss complex geometry and establish the Kodaira Embedding Theorem.

  • af Rajan Chattamvelli
    614,95 kr.

    This is an introductory book on continuous statistical distributions and its applications. It is primarily written for graduate students in engineering, undergraduate students in statistics, econometrics, and researchers in various fields. The purpose is to give a self-contained introduction to most commonly used classical continuous distributions in two parts. Important applications of each distribution in various applied fields are explored at the end of each chapter. A brief overview of the chapters is as follows. Chapter 1 discusses important concepts on continuous distributions like location-and-scale distributions, truncated, size-biased, and transmuted distributions. A theorem on finding the mean deviation of continuous distributions, and its applications are also discussed. Chapter 2 is on continuous uniform distribution, which is used in generating random numbers from other distributions. Exponential distribution is discussed in Chapter 3, and its applications briefly mentioned. Chapter 4 discusses both Beta-I and Beta-II distributions and their generalizations, as well as applications in geotechnical engineering, PERT, control charts, etc. The arcsine distribution and its variants are discussed in Chapter 5, along with arcsine transforms and Brownian motion. This is followed by gamma distribution and its applications in civil engineering, metallurgy, and reliability. Chapter 7 is on cosine distribution and its applications in signal processing, antenna design, and robotics path planning. Chapter 8 discusses the normal distribution and its variants like lognormal, and skew-normal distributions. The last chapter of Part I is on Cauchy distribution, its variants and applications in thermodynamics, interferometer design, and carbon-nanotube strain sensing. A new volume (Part II) covers inverse Gaussian, Laplace, Pareto, ,,,,2, T, F, Weibull, Rayleigh, Maxwell, and Gumbel distributions.

  • af Sujaul Chowdhury
    252,95 kr.

    This book is intended for undergraduate students of Mathematics, Statistics, and Physics who know nothing about Monte Carlo Methods but wish to know how they work. All treatments have been done as much manually as is practicable. The treatments are deliberately manual to let the readers get the real feel of how Monte Carlo Methods work. Definite integrals of a total of five functions ,,,,(,,,,), namely Sin(,,,,), Cos(,,,,), e,,,,, loge(,,,,), and 1/(1+,,,,2), have been evaluated using constant, linear, Gaussian, and exponential probability density functions ,,,,(,,,,). It is shown that results agree with known exact values better if ,,,,(,,,,) is proportional to ,,,,(,,,,). Deviation from the proportionality results in worse agreement. This book is on Monte Carlo Methods which are numerical methods for Computational Physics. These are parts of a syllabus for undergraduate students of Mathematics and Physics for the course titled "e;Computational Physics."e;Need for the book: Besides the three referenced books, this is the only book that teaches how basic Monte Carlo methods work. This book is much more explicit and easier to follow than the three referenced books. The two chapters on the Variational Quantum Monte Carlo method are additional contributions of the book. Pedagogical features: After a thorough acquaintance with background knowledge in Chapter 1, five thoroughly worked out examples on how to carry out Monte Carlo integration is included in Chapter 2. Moreover, the book contains two chapters on the Variational Quantum Monte Carlo method applied to a simple harmonic oscillator and a hydrogen atom. The book is a good read; it is intended to make readers adept at using the method. The book is intended to aid in hands-on learning of the Monte Carlo methods.

  • af Bouchra Aylaj
    304,95 kr.

    The contents of this brief Lecture Note are devoted to modeling, simulations, and applications with the aim of proposing a unified multiscale approach accounting for the physics and the psychology of people in crowds. The modeling approach is based on the mathematical theory of active particles, with the goal of contributing to safety problems of interest for the well-being of our society, for instance, by supporting crisis management in critical situations such as sudden evacuation dynamics induced through complex venues by incidents.

  • af Rajan Chattamvelli
    492,95 kr.

    This is an introductory book on discrete statistical distributions and its applications. It discusses only those that are widely used in the applications of probability and statistics in everyday life. The purpose is to give a self-contained introduction to classical discrete distributions in statistics. Instead of compiling the important formulas (which are available in many other textbooks), we focus on important applications of each distribution in various applied fields like bioinformatics, genomics, ecology, electronics, epidemiology, management, reliability, etc., making this book an indispensable resource for researchers and practitioners in several scientific fields. Examples are drawn from different fields. An up-to-date reference appears at the end of the book.Chapter 1 introduces the basic concepts on random variables, and gives a simple method to find the mean deviation (MD) of discrete distributions. The Bernoulli and binomial distributions are discussed in detail in Chapter 2. A short chapter on discrete uniform distribution appears next. The next two chapters are on geometric and negative binomial distributions. Chapter 6 discusses the Poisson distribution in-depth, including applications in various fields. Chapter 7 is on hypergeometric distribution. As most textbooks in the market either do not discuss, or contain only brief description of the negative hypergeometric distribution, we have included an entire chapter on it. A short chapter on logarithmic series distribution follows it, in which a theorem to find the kth moment of logarithmic distribution using (k-1)th moment of zero-truncated geometric distribution is presented. The last chapter is on multinomial distribution and its applications.The primary users of this book are professionals and practitioners in various fields of engineering and the applied sciences. It will also be of use to graduate students in statistics, research scholars in science disciplines, and teachers of statistics, biostatistics, biotechnology, education, and psychology.

  • af Snehashish Chakraverty
    492,95 kr.

    Uncertainty is an inseparable component of almost every measurement and occurrence when dealing with real-world problems. Finding solutions to real-life problems in an uncertain environment is a difficult and challenging task. As such, this book addresses the solution of uncertain static and dynamic problems based on affine arithmetic approaches. Affine arithmetic is one of the recent developments designed to handle such uncertainties in a different manner which may be useful for overcoming the dependency problem and may compute better enclosures of the solutions. Further, uncertain static and dynamic problems turn into interval and/or fuzzy linear/nonlinear systems of equations and eigenvalue problems, respectively. Accordingly, this book includes newly developed efficient methods to handle the said problems based on the affine and interval/fuzzy approach. Various illustrative examples concerning static and dynamic problems of structures have been investigated in order to show the reliability and efficacy of the developed approaches.

  • af Snehashish Chakraverty
    492,95 kr.

    The subject of fractional calculus has gained considerable popularity and importance during the past three decades, mainly due to its validated applications in various fields of science and engineering. It is a generalization of ordinary differentiation and integration to arbitrary (non-integer) order. The fractional derivative has been used in various physical problems, such as frequency-dependent damping behavior of structures, biological systems, motion of a plate in a Newtonian fluid, ,,,,,,,,I ,,,,? controller for the control of dynamical systems, and so on. It is challenging to obtain the solution (both analytical and numerical) of related nonlinear partial differential equations of fractional order. So for the last few decades, a great deal of attention has been directed towards the solution for these kind of problems. Different methods have been developed by other researchers to analyze the above problems with respect to crisp (exact) parameters.However, in real-life applications such as for biological problems, it is not always possible to get exact values of the associated parameters due to errors in measurements/experiments, observations, and many other errors. Therefore, the associated parameters and variables may be considered uncertain. Here, the uncertainties are considered interval/fuzzy. Therefore, the development of appropriate efficient methods and their use in solving the mentioned uncertain problems are the recent challenge.In view of the above, this book is a new attempt to rigorously present a variety of fuzzy (and interval) time-fractional dynamical models with respect to different biological systems using computationally efficient method. The authors believe this book will be helpful to undergraduates, graduates, researchers, industry, faculties, and others throughout the globe.

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.