Vi bøger
Levering: 1 - 2 hverdage

Bøger i Synthesis Lectures on Mechanical Engineering serien

Filter
Filter
Sorter efterSorter Serie rækkefølge
  • af Andrew M. Brown
    577,95 - 692,95 kr.

  • af Albert C. J. Luo
    654,95 - 690,95 kr.

  • af Mohammad H. Sadraey
    487,95 - 690,95 kr.

  • af Allan T. Kirkpatrick
    487,95 - 690,95 kr.

    This second edition builds on the foundation established by the previous first edition published in 2017. The first edition covered background information, description, and analysis of four major cooling system technologies - vapor compression cooling, evaporative cooling, absorption cooling, and gas cooling. The second edition has been expanded to include increased coverage of cooling system refrigerants, fluid mechanics, heat transfer, and building cooling loads. With increasing climate change due to the buildup of greenhouse gas emissions in the atmosphere, there has been a worldwide impetus to transition to cooling systems and refrigerants that have a low or even zero global warming potential. The text is written as a tutorial for engineering students and practicing engineers who want to become more familiar with the performance of refrigeration and air conditioning systems. The goals are to familiarize the reader with cooling technology nomenclature and provide insight into how refrigeration and air conditioning systems can be modeled and analyzed. Emphasis is placed on constructing idealized thermodynamic cycles to represent actual physical situations in cooling systems. The book contains numerous practical examples to show how one can calculate the performance of cooling system components. By becoming familiar with the analyses presented in the examples, one can gain a feel for representative values of the various thermal and mechanical parameters that characterize cooling systems. 

  • af Stephen Dawe
    358,95 kr.

    This book provides an industry-oriented data analytics approach for process engineers, including data acquisition methods and sources, exploratory data analysis and sensitivity analysis, data-based modelling for prediction, data-based modelling for monitoring and control, and data-based optimization of processes. While many of the current data analytics books target business-related problems, the rationale for this book is a specific need to understand and select applicable data analytics approaches pragmatically to analyze process engineering¿related problems; this tailored solution for engineers gets amalgamated with governing equations, and in several cases, with the physical understanding of the phenomenon being analyzed. We also consider this book strategically conceived to help map Education 4.0 with Industry 4.0 since it can support undergraduate and graduate students to gain valuable and applicable data analytics stills that can be further used in their workplace. Moreover, itcan be used as a reference book for professionals, a quick reference to data analytics tools that can facilitate and/or optimize their process engineering tasks.

  • af Albert C. J. Luo
    487,95 - 690,95 kr.

    The tuned mass damper is one of the classic dynamic vibration absorbers with effective devices for energy dissipation and vibration reduction. The electromagnetically tuned mass damper system is extensively used for vibration reduction in engineering. A better understanding of the nonlinear dynamics of the electromagnetically tuned mass damper system is very important to optimize the parameters of such systems for vibration reduction. However, until now, one cannot fully understand complex periodic motions in such a nonlinear, electromagnetically tuned mass damper system. In this book, the semi-analytical solutions of periodic motions are presented through period-1, period-3, period-9, and period-12 motions. The corresponding stability and bifurcations of periodic motions are determined. The frequency-amplitude characteristics for bifurcation routes of such higher-order periodic motions are presented. This book helps people better understand the dynamical behaviors of an electromagnetically tuned mass damper system for the new development and design of vibration reduction and energy harvesting systems.

  • af Daniel J. Inman
    690,95 kr.

    The aim of this book is to educate the beneficiaries of this technology, because there is so little awareness and understanding of what can be achieved with tuned mass dampers and vibration absorbers and of the relatively small increase in mass and complexity in exchange for the tremendous benefit in vibration reduction. It introduces the feedback approach to help understand why these devices work and are very helpful in modeling the devices on complicated structures. The hardware demonstrators are simple and directly scalable to more complicated structures. Once a reader successfully operates the demonstration hardware, the concepts in the book are directly scalable to implementations on very complex structures like airplanes and rockets. A recipe is provided to 3D print most of the parts as well as easy-to-find brackets and sensors. The whole kit can be assembled in an afternoon. The directions will be similar in detail to a DIY magazine article, providing simple, step-by-step procedures. Via app: download the SN More Media app for free, scan a link with play button and access MP4 directly on your smartphone or tablet.

  • af Surkay D. Akbarov
    367,95 kr.

    The book presents formulations and examples of three-dimensional non-axisymmetric stability in viscoelastic anisotropic cylindrical shells. The most critical stability loss modes are determined by minimizing the critical loads and critical times with respect to the number of half-waves in radial as well as transverse directions.Currently, there is no literature available on three-dimensional local buckling analysis (or localized warpage) that considers non-axisymmetric stability loss in viscoelastic cylindrical shells. The contents of this book provide the formulation for such a stability loss analysis through the framework of the three-dimensional linearized theory of stability. Additionally, as this book addresses the problem by modeling the material as a viscoelastic fibrous composite, it can be applied to carry out buckling analysis in both elastic and viscoelastic cases.Guide to modelling composite viscoelastic shell elements for buckling analysisProvides a framework for defining the failure criterion for viscoelastic materialsCourse material for teaching shell buckling and viscoelastic composites

  • af Issam Abu-Mahfouz
    487,95 - 690,95 kr.

    This book emphasizes simple and concise coverage of the fundamental aspects of measuring systems. It is designed to provide the reader with essential knowledge regarding signals, signal analysis, signal conditioning circuits, and data acquisition systems. The prerequisites are a basic knowledge of multivariable calculus, introductory physics, and a familiarity with basic electrical circuits and components. Delivers topics and techniques that are fundamental to the understanding of the measurement process. These include standards, dynamic characteristics of measuring devices, statistical analysis of data, uncertainty analysis, signal conditioning devices, transistors,and logic circuits, analog to digital converters. To aid in the understanding of the subject matter and related applications, the book chapters are complemented with examples and problems. Careful attention was paid to the details of figures and illustration to help enforce the learning objectives of this book.

  • af Seiichi Nomura
    487,95 - 690,95 kr.

    Complex variable theory is attractive for engineers as it offers elegant approaches for certain types of differential equations in engineering including heat transfer, solid mechanics, and fluid mechanics. However, a gap exists between books written by mathematicians and books written by engineers in their specific fields. Naturally, mathematicians tend to emphasize rigorousness and consistency while less emphasizing applications. On the other hand, books written by engineers often jump directly to the specific topics assuming that the readers already have sufficient background of complex variables and the pathway from theory to the application is not clearly elucidated. This book closes the gap in the literature. providing a smooth transition from basic theory to the application is accomplished. Although it is not possible to cover all the topics in engineering exhaustively, the readers can at least find the logic of how and why complex variables are effective for some of the engineering problems. Another motivation for writing this book is to demonstrate that the readers can take advantage of a computer algebra system, Mathematica, to facilitate tedious algebra and visualize complex functions so that they can focus on principles instead of spending endless hours on algebra by hand. Unlike numerical tools such as MATLAB and FORTRAN, Mathematica can expand, differentiate, and integrate complex-valued functions symbolically. Mathematica can be used as a stand-alone symbolic calculator or a programming tool using the Wolfram Language. If Mathematica is not available locally, Wolfram Cloud Basic can be used online as a free service to execute Mathematica statements.

  • af Tetsuya Ohashi
    690,95 kr.

    There are several textbooks and monographs on dislocations and the mechanical and physical properties of metals, but most of them discuss the topics in terms of more or less one-dimensional or scalar quantities. However, actual metallic materials are often three-dimensionally heterogeneous in their microstructure, and this heterogeneity has a significant impact on the macroscopic mechanical properties. With advances in computational technology, the complexity introduced by spatial heterogeneity in the microstructure of metals can now be explored using numerical methods. This book explains in simple terms the idea of extending the continuum mechanics theory of plastic deformation of crystals to three-dimensional analysis and applying it to the analysis of more realistic models of metal microstructures. This book links solid mechanics and materials science by providing clear physical pictures and mathematical models of plastic slip deformation and the accumulation of dislocations and atomic vacancies in metallic materials. Both monotonic and cyclic loading cases are considered.

  • af P. Flores, C. Medina, A. Salas, mfl.
    247,95 kr.

    This book provides a comprehensive overview of the current progress in fiber-reinforced plastics (FRP), covering manufacturing, mechanical behavior, and resistance performance. It includes the elastic and damage behavior of unidirectional FRP, and highlights the improvements achieved by adding multiwall carbon nanotubes. The material resistance is assessed through fatigue response, local behavior, local properties, and failure mechanisms, including crack density and microcrack propagation behavior. The book also explores the degradation of macroscopic mechanical properties such as elastic modulus and compressive strength versus plastic strains. Additionally, it focuses on the progress made in out-of-plane composite characterization and modeling response for simulations of critical mechanical parts currently used in different industries, thanks to advances in manufacturing techniques that allow for the production of increasingly complex and thicker geometries.

  • af Menachem Kimchi
    690,95 kr.

    The early chapters of this book provide thorough coverage of resistance spot welding fundamentals and principles. Topics covered include lobe and current range curves, contact resistance vs. electrode force, dynamic resistance, heat balance, nugget growth, etc. Equipment issues such as machine types, power supplies, and electrodes are addressed. Subsequent chapters focus on specific spot welding challenges to modern automotive manufacturing. Approaches to welding modern materials including advanced high-strength steels, coated steels, and aluminum alloys are covered in much detail. The final chapters focus on many common production and quality control issues, such as electrode wear, monitoring and testing, computational modeling, and welding codes. The overall goal of the book is to provide a comprehensive resource for automotive engineers and technicians who work with modern spot welding equipment and automotive materials.

  • af Yalcin Ertekin & Arif Sirinterlikci
    690,95 kr.

    This book draws a comprehensive approach to digital manufacturing through computer-aided design (CAD) and reverse engineering content complemented by basic CNC machining and computer-aided manufacturing (CAM), 3D printing, and additive manufacturing (AM) knowledge. The reader is exposed to a variety of subjects including the history, development, and future of digital manufacturing, a comprehensive look at 3D printing and AM, a comparative study between 3D printing and AM and CNC machining, and computer-aided engineering (CAE) along with 3D scanning. Applications of 3D printing and AM are presented as well as multiple special topics including design for 3D printing and AM (DfAM), costing, sustainability, environmental, safety, and health (EHS) issues. Contemporary subjects such as bio-printing, intellectual property (IP) and engineering ethics, virtual prototyping including augmented, virtual, and mixed reality (AR/VR/MR), and industrial Internet of Things (IIoT) are also covered.Each chapter comes with in-practice exercises and end-of-chapter questions, which can be used as home-works as well as hands-on or software-based laboratory activities. End-of-chapter questions are of three types mainly: review questions which can be answered by reviewing each chapter, research questions which need to be answered by conducting literature reviews and additional research, and discussion questions. In addition, some of the chapters include relevant problems or challenges which may require additional hands-on efforts. Most of the hands-on and practical content is driven by the authors¿ previous experiences. The authors also encourage readers to help improve this book and its exercises by contacting them.

  • af Shuvra Das
    690,95 kr.

    This book is an attempt to develop a guide for the user who is interested in learning the method by doing. There is enough discussion of some of the basic theory so that the user can get a broad understanding of the process. And there are many examples with step-by-step instructions for the user to quickly develop some proficiency in using FEA. We have used Matlab and its PDE toolbox for the examples in this text. The syntax and the modeling process are easy to understand and a new user can become productive very quickly. The PDE toolbox, just like any other commercial software, can solve certain classes of problems well but is not capable of solving every type of problem. For example, it can solve linear problems but is not capable of handling non-linear problems. Being aware of the capabilities of any tool is an important lesson for the user and we have, with this book, tried to highlight that lesson as well.

  • af Albert Luo
    407,95 kr.

    The book is about the global stability and bifurcation of equilibriums in polynomial functional systems. Appearing and switching bifurcations of simple and higher-order equilibriums in the polynomial functional systems are discussed, and such bifurcations of equilibriums are not only for simple equilibriums but for higher-order equilibriums. The third-order sink and source bifurcations for simple equilibriums are presented in the polynomial functional systems. The third-order sink and source switching bifurcations for saddle and nodes are also presented, and the fourth-order upper-saddle and lower-saddle switching and appearing bifurcations are presented for two second-order upper-saddles and two second-order lower-saddles, respectively. In general, the (2,,,, + 1)th-order sink and source switching bifurcations for (2,,,,,,,,)th-order saddles and (2,,,,,,,, +1)-order nodes are also presented, and the (2,,,,)th-order upper-saddle and lower-saddle switching and appearing bifurcations are presented for (2,,,,,,,,)th-order upper-saddles and (2,,,,,,,,)th-order lower-saddles (,,,,, ,,,, = 1,2,...). The vector fields in nonlinear dynamical systems are polynomial functional. Complex dynamical systems can be constructed with polynomial algebraic structures, and the corresponding singularity and motion complexity can be easily determined.

  • af John Gardner
    492,95 kr.

    The vapor compression cycle (VCC) underpins the vast majority of refrigeration systems throughout the world. Most undergraduate thermodynamics courses cover the VCC, albeit in a cursory fashion. This book is designed to offer an in-depth look at the analysis, design and operation of large-scale industrial ammonia-based refrigeration systems. An important feature of this work is a treatment of computer-aided analysis using CoolProp, an open source resource for evaluating thermodynamic properties. CoolProp can be incorporated into a large number of common computational platforms including Microsfot Excel, Python, and Matlab, all of which are covered in this book.

  • af Zhitong Chen
    492,95 kr.

    Cold atmospheric plasma (CAP) is a promising and rapidly emerging technology for a wide range of applications, from daily life to industry. CAP's key advantage is its unique ability to effectively deliver reactive species to subjects including biological materials, liquid media, aerosols, and manufactured surfaces. This book assesses the state-of-art in CAP research and implementation for applications including agriculture, medicine, environment, materials, catalysis, and energy. The mechanisms of generation and transport of the key reactive species in the plasma are introduced and examined in the context of their applications. Opportunities and challenges for novel technologies, fresh ideas/concepts, expanded multidisciplinary study, and new applications are discussed. The authors' vision for the converging trends across diverse disciplines is proposed to stimulate critical discussions, research directions, and collaborations.

  • af Ramana Pidaparti
    237,95 kr.

    Capstone Design: Project Process and Reviews (Student Engineering Design Workbook) provides a brief overview of the design process as well as templates, tools, and student design notes. The goal of this workbook is to provide students in multiple disciplines with a systematic iterative process to follow in their Capstone Design projects and get feedback through design reviews. Students should treat this workbook as a working document and document individual/team decisions, make sketches of their concepts, and add additional design documentation. This workbook also assists in documenting student responsibility and accountability for individual contributions to the project. Freshman- and sophomore-level students may also find this workbook helpful for design projects. Finally, this workbook will also serve as an evaluation and assessment tool for the faculty mentor/advisor.

  • af Shung Sung
    466,95 kr.

    This book describes the Asymptotic Modal Analysis (AMA) method to predict the high-frequency vibroacoustic response of structural and acoustical systems. The AMA method is based on taking the asymptotic limit of Classical Modal Analysis (CMA) as the number of modes in the structural system or acoustical system becomes large in a certain frequency bandwidth. While CMA requires both the computation of individual modes and a modal summation, AMA evaluates the averaged modal response only at a center frequency of the bandwidth and does not sum the individual contributions from each mode to obtain a final result. It is similar to Statistical Energy Analysis (SEA) in this respect. However, while SEA is limited to obtaining spatial averages or mean values (as it is a statistical method), AMA is derived systematically from CMA and can provide spatial information as well as estimates of the accuracy of the solution for a particular number of modes. A principal goal is to present the state-of-the-art of AMA and suggest where further developments may be possible. A short review of the CMA method as applied to structural and acoustical systems subjected to random excitation is first presented. Then the development of AMA is presented for an individual structural system and an individual acoustic cavity system, as well as a combined structural-acoustic system. The extension of AMA for treating coupled or multi-component systems is then described, followed by its application to nonlinear systems. Finally, the AMA method is summarized and potential further developments are discussed.

  • af Anthony D'Angelo Jr.
    466,95 kr.

    This book is intended for students taking a Machine Design course leading to a Mechanical Engineering Technology degree. It can be adapted to a Machine Design course for Mechanical Engineering students or used as a reference for adopting systems engineering into a design course. The book introduces the fundamentals of systems engineering, the concept of synthesis, and the basics of trade-off studies. It covers the use of a functional flow block diagram to transform design requirements into the design space to identify all success modes. The book discusses fundamental stress analysis for structures under axial, torsional, or bending loads. In addition, the book discusses the development of analyzing shafts under combined loads by using Mohr's circle and failure mode criterion. Chapter 3 provides an overview of fatigue and the process to develop the shaft-sizing equations under dynamic loading conditions. Chapter 4 discusses power equations and the nomenclature and stress analysis for spur and straight bevel gears and equations for analyzing gear trains. Other machine component topics include derivation of the disc clutch and its relationship to compression springs, derivation of the flat belt equations, roller and ball bearing life equations, roller chains, and keyways. Chapter 5 introduces the area of computational machine design and provides codes for developing simple and powerful computational methods to solve: cross product required to calculate the torques and bending moments on shafts, 1D stress analysis, reaction loads on support bearings, Mohr's circle, shaft sizing under dynamic loading, and cone clutch. The final chapter shows how to integrate Systems Engineering into machine design for a capstone project as a project-based collaborative design methodology. The chapter shows how each design requirement is transformed through the design space to identify the proper engineering equations.

  • af Robabeh Jazaei
    300,95 kr.

    Fluid mechanics is one of the most challenging undergraduate courses for engineering students. The fluid mechanics lab facilitates students' learning in a hands-on environment. The primary objective of this book is to provide a graphical lab manual for the fluid mechanics laboratory. The manual is divided into six chapters to cover the main topics of undergraduate-level fluid mechanics. Chapter 1 begins with an overview of laboratory objectives and the introduction of technical laboratory report content. In Chapter 1, error analysis is discussed by providing examples. In Chapter 2, fluid properties including viscosity, density, temperature, specific weight, and specific gravity are discussed. Chapter 3 revolves around the fluid statics include pressure measurement using piezometers and manometers. Additionally, hydrostatic pressure on the submerged plane and curved surfaces as well as buoyancy and Archimedes' Principle are examined in Chapter 3. In Chapter 4, several core concepts of fluid dynamics are discussed. This chapter begins with defining a control system based on which momentum analysis of the flow system is explained. The rest of the chapter is allotted to the force acting on a control system, the linear momentum equation, and the energy equation. Chapter 4 also covers the hydraulic grade line and energy grade line experiment. The effect of orifice and changing cross-sectional area by using Bernoulli's' equation is presented in Chapter 4. The application of the siphon is extended from Chapter 4 by applying Bernoulli's' equation. The last two chapters cover various topics in both internal and external flows which are of great importance in engineering design. Chapter 5 deals with internal flow including Reynolds number, flow classification, flow rate measurement, and velocity profile. The last experiment in Chapter 5 is devoted to a deep understanding of internal flow concepts in a piping system. In this experiment, students learn how to measure minor and major head losses as well as the impact of piping materials on the hydrodynamics behavior of the flow. Finally, open channels, weirs, specific energy, and flow classification, hydraulic jump, and sluice gate experiments are covered in Chapter 6.

  • af Siyuan Xing
    252,95 kr.

    In this book, the global sequential scenario of bifurcation trees of periodic motions to chaos in nonlinear dynamical systems is presented for a better understanding of global behaviors and motion transitions for one periodic motion to another one. A 1-dimensional (1-D), time-delayed, nonlinear dynamical system is considered as an example to show how to determine the global sequential scenarios of the bifurcation trees of periodic motions to chaos. All stable and unstable periodic motions on the bifurcation trees can be determined. Especially, the unstable periodic motions on the bifurcation trees cannot be achieved from the traditional analytical methods, and such unstable periodic motions and chaos can be obtained through a specific control strategy.The sequential periodic motions in such a 1-D time-delayed system are achieved semi-analytically, and the corresponding stability and bifurcations are determined by eigenvalue analysis. Each bifurcation tree of a specific periodic motion to chaos are presented in detail. The bifurcation tree appearance and vanishing are determined by the saddle-node bifurcation, and the cascaded period-doubled periodic solutions are determined by the period-doubling bifurcation. From finite Fourier series, harmonic amplitude and harmonic phases for periodic motions on the global bifurcation tree are obtained for frequency analysis. Numerical illustrations of periodic motions are given for complex periodic motions in global bifurcation trees. The rich dynamics of the 1-D, delayed, nonlinear dynamical system is presented. Such global sequential periodic motions to chaos exist in nonlinear dynamical systems. The frequency-amplitude analysis can be used for re-construction of analytical expression of periodic motions, which can be used for motion control in dynamical systems.

  • af Tariq M. Arif
    300,95 kr.

    This book provides a short introduction and easy-to-follow implementation steps of deep learning using Google Cloud Platform. It also includes a practical case study that highlights the utilization of Python and related libraries for running a pre-trained deep learning model.In recent years, deep learning-based modeling approaches have been used in a wide variety of engineering domains, such as autonomous cars, intelligent robotics, computer vision, natural language processing, and bioinformatics. Also, numerous real-world engineering applications utilize an existing pre-trained deep learning model that has already been developed and optimized for a related task. However, incorporating a deep learning model in a research project is quite challenging, especially for someone who doesn't have related machine learning and cloud computing knowledge. Keeping that in mind, this book is intended to be a short introduction of deep learning basics through the example of a practical implementation case.The audience of this short book is undergraduate engineering students who wish to explore deep learning models in their class project or senior design project without having a full journey through the machine learning theories. The case study part at the end also provides a cost-effective and step-by-step approach that can be replicated by others easily.

  • af Snehashish Chakraverty
    252,95 kr.

    In general, nanofluid is suspension of nanometer-sized particle in base fluids such as water, oil, ethylene glycol mixture etc. Nanofluid has more thermal conductivity compared to the base fluids. As such, the nanofluid has more heat transfer capacity than the base fluids. In order to study nanofluid flow problems, we need to solve related nonlinear differential equations analytically or numerically. But in most cases, we may not get an analytical solution. Accordingly, the related nonlinear differential equations need to be solved by efficient numerical methods.Accordingly, this book addresses various challenging problems related to nanofluid flow. In this regard, different efficient numerical methods such as homotopy perturbation method, Galerkin's method, and least square method are included. Further, the above practical problems are validated in special cases. We believe that this book will be very beneficial for readers who want firsthand knowledge on how to solve nanofluid flow problems.

  • af Shuvra Das
    492,95 kr.

    Mechatronic Systems consist of components and/or sub-systems which are from different engineering domains. For example, a solenoid valve has three domains that work in a synergistic fashion: electrical, magnetic, and mechanical (translation). Over the last few decades, engineering systems have become more and more mechatronic. Automobiles are transforming from being gasoline-powered mechanical devices to electric, hybrid electric and even autonomous. This kind of evolution has been possible through the synergistic integration of technology that is derived from different disciplines. Understanding and designing mechatronic systems needs to be a vital component of today's engineering education. Typical engineering programs, however, mostly continue to train students in academic silos (otherwise known as majors) such as mechanical, electrical, or computer engineering. Some universities have started offering one or more courses on this subject and a few have even started full programs around the theme of Mechatronics. Modeling the behavior of Mechatronic systems is an important step for analysis, synthesis, and optimal design of such systems. One key training necessary for developing this expertise is to have comfort and understanding of the basic physics of different domains. A second need is a suitable software tool that implements these laws with appropriate flexibility and is easy to learn.This short text addresses the two needs: it is written for an audience who will likely have good knowledge and comfort in one of the several domains that we will consider, but not necessarily all; the book will also serve as a guide for the students to learn how to develop mechatronic system models with Simscape (a MATLAB tool box). The book uses many examples from different engineering domains to demonstrate how to develop mechatronic system models and what type of information can be obtained from the analyses.

  • af Mohammad Sadraey
    492,95 kr.

    This book provides readers with a design approach to the automatic flight control systems (AFCS). The AFCS is the primary on-board tool for long flight operations, and is the foundation for the airspace modernization initiatives. In this text, AFCS and autopilot are employed interchangeably. It presents fundamentals of AFCS/autopilot, including primary subsystems, dynamic modeling, AFCS categories/functions/modes, servos/actuators, measurement devices, requirements, functional block diagrams, design techniques, and control laws. The book consists of six chapters. The first two chapters cover the fundamentals of AFCS and closed-loop control systems in manned and unmanned aircraft. The last four chapters present features of Attitude control systems (Hold functions), Flight path control systems (Navigation functions), Stability augmentation systems, and Command augmentation systems, respectively.

  • af Yu Guo
    304,95 kr.

    The inherent complex dynamics of a parametrically excited pendulum is of great interest in nonlinear dynamics, which can help one better understand the complex world.Even though the parametrically excited pendulum is one of the simplest nonlinear systems, until now, complex motions in such a parametric pendulum cannot be achieved. In this book, the bifurcation dynamics of periodic motions to chaos in a damped, parametrically excited pendulum is discussed. Complete bifurcation trees of periodic motions to chaos in the parametrically excited pendulum include:period-1 motion (static equilibriums) to chaos, andperiod-,,,, motions to chaos (,,,, = 1, 2, , 6, 8, , 12).The aforesaid bifurcation trees of periodic motions to chaos coexist in the same parameter ranges, which are very difficult to determine through traditional analysis. Harmonic frequency-amplitude characteristics of such bifurcation trees are also presented to show motion complexity and nonlinearity in such a parametrically excited pendulum system. The non-travelable and travelable periodic motions on the bifurcation trees are discovered. Through the bifurcation trees of travelable and non-travelable periodic motions, the travelable and non-travelable chaos in the parametrically excited pendulum can be achieved. Based on the traditional analysis, one cannot achieve the adequate solutions presented herein for periodic motions to chaos in the parametrically excited pendulum. The results in this book may cause one rethinking how to determine motion complexity in nonlinear dynamical systems.

  • af Xiaobin Le
    566,95 kr.

    A component will not be reliable unless it is designed with required reliability. Reliability-Based Mechanical Design uses the reliability to link all design parameters of a component together to form a limit state function for mechanical design. This design methodology uses the reliability to replace the factor of safety as a measure of the safe status of a component. The goal of this methodology is to design a mechanical component with required reliability and at the same time, quantitatively indicates the failure percentage of the component. Reliability-Based Mechanical Design consists of two separate books: Volume 1: Component under Static Load, and Volume 2: Component under Cyclic Load and Dimension Design with Required Reliability. This book is Reliability-Based Mechanical Design, Volume 2: Component under Cyclic Load and Dimension Design with Required Reliability. It begins with a systematic description of a cyclic load. Then, the books use two probabilistic fatigue theories to establish the limit state function of a component under cyclic load, and further to present how to calculate the reliability of a component under a cyclic loading spectrum. Finally, the book presents how to conduct dimension design of typical components such as bar, pin, shaft, beam under static load, or cyclic loading spectrum with required reliability. Now, the designed component will be reliable because it has been designed with the required reliability. The book presents many examples for each topic and provides a wide selection of exercise problems at the end of each chapter. This book is written as a textbook for senior mechanical engineering students after they study the course Design of Machine Elements or a similar course. This book is also a good reference for design engineers and presents design methods in such sufficient detail that those methods are readily used in the design.

  • af Xiaobin Le
    566,95 kr.

    A component will not be reliable unless it is designed with required reliability. Reliability-Based Mechanical Design uses the reliability to link all design parameters of a component together to form a limit state function for mechanical design. This design methodology uses the reliability to replace the factor of safety as a measure of the safe status of a component. The goal of this methodology is to design a mechanical component with required reliability and at the same time, quantitatively indicates the failure percentage of the component. Reliability-Based Mechanical Design consists of two separate books: Volume 1: Component under Static Load, and Volume 2: Component under Cyclic Load and Dimension Design with Required Reliability. This book is Reliability-Based Mechanical Design, Volume 1: Component under Static Load. It begins with a brief discussion on the engineering design process and the fundamental reliability mathematics. Then, the book presents several computational methods for calculating the reliability of a component under loads when its limit state function is established. Finally, the book presents how to establish the limit state functions of a component under static load and furthermore how to calculate the reliability of typical components under simple typical static load and combined static loads. Now, we do know the reliability of a component under static load and can quantitively specify the failure percentage of a component under static load. The book presents many examples for each topic and provides a wide selection of exercise problems at the end of each chapter. This book is written as a textbook for junior mechanical engineering students after they study the course of Mechanics of Materials. This book is also a good reference book for design engineers and presents design check methods in such sufficient detail that those methods are readily used in the design check of a component under static load.

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.