Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The brain is the most complex computational machine known to science, even though its components (neurons) are slow and unreliable compared to a laptop computer. In this richly illustrated book, Shannon's mathematical theory of information is used to explore the metabolic efficiency of neurons, with special reference to visual perception. Evidence from a diverse range of research papers is used to show how information theory defines absolute limits on neural efficiency; limits which ultimately determine the neuroanatomical microstructure of the eye and brain. Written in an informal style, with a comprehensive glossary, tutorial appendices, explainer boxes, and a list of annotated Further Readings, this book is an ideal introduction to cutting-edge research in neural information theory.
Linear regression is the workhorse of data analysis. It is the first step, and often the only step, in fitting a simple model to data. This brief book explains the essential mathematics required to understand and apply regression analysis. The tutorial style of writing, accompanied by over 30 diagrams, offers a visually intuitive account of linear regression, including a brief overview of nonlinear and Bayesian regression. Hands-on experience is provided in the form of numerical examples, included as Matlab code at the end of each chapter, and implemented online as Python and Matlab code. Supported by a comprehensive glossary and tutorial appendices, this book provides an ideal introduction to regression analysis.
Linear regression is the workhorse of data analysis. It is the first step, and often the only step, in fitting a simple model to data. This brief book explains the essential mathematics required to understand and apply regression analysis. The tutorial style of writing, accompanied by over 30 diagrams, offers a visually intuitive account of linear regression, including a brief overview of nonlinear and Bayesian regression. Hands-on experience is provided in the form of numerical examples, included as Python code at the end of each chapter, and implemented online as Python and Matlab code. Supported by a comprehensive glossary and tutorial appendices, this book provides an ideal introduction to regression analysis.
Linear regression is the workhorse of data analysis. It is the first step, and often the only step, in fitting a simple model to data. This brief book explains the essential mathematics required to understand and apply regression analysis. The tutorial style of writing, accompanied by over 30 diagrams, offers a visually intuitive account of linear regression, including a brief overview of nonlinear and Bayesian regression. Hands-on experience is provided in the form of numerical examples, implemented online with Python and Matlab code. Supported by a comprehensive glossary and tutorial appendices, this book is an ideal introduction to regression analysis.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.