Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
With an increasing demand of globally minded graduates, colleges and universities are trying to internationalize their campuses with increasing number of international students, expecting global engagement on campus. However, the opportunity for American students to engage with the world through their international peers is largely untapped due to lack of meaningful engagement opportunities. This constructivist study explores American undergraduate students¿ experiences of interactions with their international peers on campus. Based on 10 in-depth interviews and 3 focus group transcripts (N=25), a model of undergraduate students¿ on-campus global engagement experience is created using grounded theory. Interview and focus group participants were selected from the respondent pool of a screener survey sent to 2,000 students randomly selected from ~32,000 American undergraduate students. From the stories of U.S. students about their interactions with international peers vis-àvis their beliefs, attitudes, and perceptions, the study identifies headbumps (roadblocks) and headways (pathways), the elements that motivate or demotivate cross-national interactions on campus.
This book is a kind of research. It is about the analysis of the tasks in the textbook. The data source of this analysis is the tasks from the English Textbook entitled "When English Rings A Bell¿. The tasks are analyzed by the theory of communicative competence by Celce-Murcia et al. The writer describes that there are four components of communicative competence. The English tasks found in the textbook that are designed to develop students¿ linguistic competence are writing or creating sentences, paragraph, the journal, invitation card, greeting card, neat and accurate handwriting using the punctuation marks and spelling of the word correctly. The tasks that develop students¿ sociocultural competence are writing the dialogues by using polite words, saying the speakers sentences correctly and clearly. The tasks that develop students¿ actional competence are playing the roles about making introduction, accepting and declining invitation, daily activities, giving information, describing, and explaining. The tasks that develop students¿ discourse competence are writing down the short texts, talking about the story and writing down the expressions to complete the dialogue.
This book comprises information related to values and concept of life. From the beginning of life, we come across numerous challenges and problems but keeping motivation up is the only solution. Every phase of life is a school of learning. Wise person should remain abide to social ethics, values and objectives. Experiment with process of social engineering may change but intention and perspiration will take one at destined place. Garudpuran, Manusmiriti and Siddhartha all three major books takes us at the same conclusion.
Blending physics with the study of ancient Chinese science, technology, and culture is a unique and highly effective way to present the fundamentals of physics to non-science majors. Based on the author¿s course at Mercer University (Georgia, U.S.), The Art of Teaching Physics with Ancient Chinese Science and Technology exposes a wide range of students to the scientific method and techniques of experimental analysis through the eyes and discoveries of ancient Chinese ¿polymaths¿ long before the European concept of the scientific method was even considered. No other book so deftly makes the connections from ancient China to Ben Franklin to Michael Faraday while teaching physics at the same time.A distinctive characteristic of this book is the detailed hands-on laboratory experiments. This first includes making a simple magnetic compass and magnetometer. Students then use the compass/magnetometer to measure the strength of the magnetic field produced by a long straight wire. The second experiment covers two different methods of mining copper to introduce students to simple chemical principles such as displacement reactions, oxidation, reduction, and electronegativity.Originally developed for non-science students in an Asian studies environment, this book provides a valuable resource for science teachers who wish to explore the historical connections largely ignored in traditional texts. When paired with Teaching Physics through Ancient Chinese Science and Technology (Marone, 2019), these two texts provide a unique means of studying selected topics traditionally found in a two-semester Physics course.
A brief overview of astronomy and cosmology is presented in five different ways, through the lenses of space, time, evolution, process, and structure. Specific topics are chosen for their contribution to a "big picture" understanding of the interconnectedness of knowledge in astronomy and cosmology. Thus, many topics (stellar astronomy for example) are treated in multiple sections, but from different viewpoints¿for example, sizes and distances of stars (space); when stars appeared in the history of the universe (time); stellar evolution (evolution); hydrostatic equilibrium and stellar spectra (process); and stellar structure (structure). Some topics traditional to the introductory astronomy curriculum¿eclipses and lunar phases, for example¿are omitted altogether as they are inessential for the big-picture goals of the book, and excellent summaries are easily available elsewhere. On the other hand, the book treats some topics not usually covered in an introductory astronomy course, forexample the roles played by equilibrium processes and symmetry in our understanding of the universe. The level is for the beginning undergraduate, with only basic skills in rudimentary algebra assumed. But more advanced students and teachers will also find the book useful as both a set of practical tools and a point of departure for taking stock (in five different ways) of the current state of knowledge in astronomy and cosmology.
This book is aimed to help instructional designers, science game designers, science faculty, lab designers, and content developers in designing interactive learning experiences using emerging technologies and cyberlearning. The proposed solutions are for undergraduate and graduate scientific communication, engineering courses, scientific research communication, and workforce training.Reviewing across the science education literature reveals various aspects of unresolved challenges or inabilities in the visualization of scientific concepts. Visuospatial thinking is the fundamental part of learning sciences; however, promoting spatial thinking has not been emphasized enough in the educational system (Hegarty, 2014). Cognitive scientists distinguish between the multiple aspects of spatial ability and stresse that various problems or disciplines require different types of spatial skills. For example, the spatial ability to visualize anatomy cross-sections is significantly associated with mental rotation skills. The same is true for physical problems that often deal with spatial representations. However, most of the physics problems are marked by dynamicity, and visualizing dynamicity is inferred by the integrations of different participating components in the system. Therefore, what is needed for learning dynamicity is visualizing the mental animation of static episodes.This book is a leap into designing framework for using mixed reality (XR) technologies and cyberlearning in communicating advanced scientific concepts. The intention is to flesh out the cognitive infrastructure and visuospatial demands of complex systems and compare them in various contexts and disciplines. The practical implementation of emerging technology can be achieved by foreseeing each XR technology's affordances and mapping those out to the cognitive infrastructure and visuospatial demands of the content under development.
The characterization of cultural heritage objects becomes increasingly important for conservation, restoration, dating, and authentication purposes. The use of scientific methods in archaeometry and conservation science has led to a significant broadening of the field. Scientific analysis of these objects is a challenging task due to their complex composition, artistic and historical values requiring the use of minimally invasive and nondestructive analytical procedures. This textbook summarizes scientific methods that are currently used to characterize objects of cultural heritage and archaeological artifacts.This book provides a brief description of the structure of matter at the molecular, atomic, and nuclear levels. Furthermore, it discusses the chemical and physical nature of materials from the molecular to the atomic and nuclear level as determined by the principles of quantum mechanics. Important aspects of natural and anthropogenic radioactivity that play a critical role for some of the analytical techniques are also emphasized. The textbook also provides principals and applications of spectroscopic methods for characterization of cultural heritage objects. It describes the technologies with specific examples for utilization of spectroscopic techniques in the characterization of paintings, books, coins, ceramics, and other objects. Analytic approaches that employ isotopes and determination of isotope ratios will be reviewed. General principles of imaging techniques and specific examples for utilization of these methods will also be summarized. In the later part of the book, a number of scientific techniques for the age determination of cultural heritage material and archaeological artifacts will be presented and discussed with specific examples.
This book focuses on a forensics-style re-examination of several historical events. The purpose of these studies is to afford readers the opportunity to apply basic principles of physics to unsolved mysteries and controversial events in order to settle the historical debate. We identify nine advantages of using case studies as a pedagogical approach to understanding forensic physics. Each of these nine advantages is the focus of a chapter of this book. Within each chapter, we show how a cascade of unlikely events resulted in an unpredictable catastrophe and use introductory-level physics to analyze the outcome. Armed with the tools of a good forensic physicist, the reader will realize that the historical record is far from being a set of agreed upon immutable facts; instead, it is a living, changing thing that is open to re-visitation, re-examination, and re-interpretation.
As the existence of all life forms on our planet is currently in grave danger from the climate emergency caused by Homo sapiens, the words "e;sustainability"e; and "e;eco-responsibility"e; have entered the daily-use vocabularies of scientists, engineers, economists, business managers, industrialists, capitalists, and policy makers. Normal activities undertaken for the design of products and systems in industrialisms must be revamped. As the bioworld is a great resource for eco-responsible design activities, an overview of biologically inspired design is presented in this book in simple terms for anyone with even high-school education.Beginning with an introduction to the process of design in industry, the book presents the bioworld as a design resource along with the rationale for biologically inspired design. Problem-driven and solution-driven approaches for biologically inspired design are described next. The last chapter is focused on biologically inspired design for environment.
Undergraduate and first-year graduate students engaging in engineering research need more than technical skills and tools to be successful. From finding a research position and funding, to getting the mentoring needed to be successful while conducting research responsibly, to learning how to do the other aspects of research associated with project management and communication, this book provides novice researchers with the guidance they need to begin developing mastery. Awareness and deeper understanding of the broader context of research reduces barriers to success, increases capacity to contribute to a research team, and enhances ability to work both independently and collaboratively. Being prepared for what's to come and knowing the questions to ask along the way allows those entering researcher to become more comfortable engaging with not only the research itself but also their colleagues and mentors.
History and archaeology tell us that when our far ancestors began to settle in localized groups, they codified their lives and experiences, and formed a collective for mutual support. This proto-civilization would have arisen from each individual¿s questions about the world, and their attempt to understand themselves and their place in the world. These groups, or tribes, evolved rules of conduct to facilitate communal living, and made a calendar for the group¿s celebration of harvests, and other events upon which the group was utterly dependent.This process of social evolution is the origin of religion, and of a magical way of looking at Nature. Eventually, this developing worldview was also the origin of science, which is our investigation of Nature to understand something of what is happening around us, and to use this knowledge to ensure our survival in a violent, indifferent Universe. After all, science and religion seek to answer the same question: Why and how isthe natural world the way it is? This book seeks to show how science evolved from religion and magic, in response to a need to understand Nature.
The theory of electromagnetic beams is presented in a simple and physical way, with all necessary mathematics explained in the text. The topics covered are in free-space classical electrodynamics, but contact is made with quantum theory in proofs that causal beams of various kinds can be viewed as superpositions of photons. This follows from explicit expressions for the energy, momentum and angular momentum per unit length for each type of beam. The properties of beams in the focal region, of special experimental and theoretical interest, are discussed in detail.There are eight chapters: on Fundamentals, Beam-like solutions of the Helmholtz equation, Electromagnetic beams, Polarization, Chirality, Comparison of electromagnetic beams, a chapter on Sound beams and particle beams (to show the similarities to and differences from the vector electromagnetic beams), and a final chapter on Measures of focal extent. Ten Appendices cover mathematical or associated physical topics.
This book presents classical relativistic mechanics and electrodynamics in the Feynman-Stueckelberg event-oriented framework formalized by Horwitz and Piron. The full apparatus of classical analytical mechanics is generalized to relativistic form by replacing Galilean covariance with manifest Lorentz covariance and introducing a coordinate-independent parameter ,,,, to play the role of Newton's universal and monotonically advancing time. Fundamental physics is described by the ,,,,-evolution of a system point through an unconstrained 8D phase space, with mass a dynamical quantity conserved under particular interactions. Classical gauge invariance leads to an electrodynamics derived from five ,,,,-dependent potentials described by 5D pre-Maxwell field equations. Events trace out worldlines as ,,,, advances monotonically, inducing pre-Maxwell fields by their motions, and moving under the influence of these fields. The dynamics are governed canonically by a scalar Hamiltonian that generates evolution of a 4D block universe defined at ,,,, to an infinitesimally close 4D block universe defined at ,,,,+,,,,,,,,. This electrodynamics, and its extension to curved space and non-Abelian gauge symmetry, is well-posed and integrable, providing a clear resolution to grandfather paradoxes. Examples include classical Coulomb scattering, electrostatics, plane waves, radiation from a simple antenna, classical pair production, classical CPT, and dynamical solutions in weak field gravitation. This classical framework will be of interest to workers in quantum theory and general relativity, as well as those interested in the classical foundations of gauge theory.
Introduction to Engineering Design is a practical, straightforward workbook designed to systematize the often messy process of designing solutions to open-ended problems. IFrom learning about the problem to prototyping a solution, this workbook guides developing engineers and designers through the iterative steps of the engineering design process. Created in a freshman engineering design course over ten years, this workbook has been refined to clearly guide students and teams to success. Together with a series of instructional videos and short project examples, the workbook has space for teams to execute the engineering design process on a challenge of their choice. Designed for university students as well as motivated learners, the workbook supports creative students as they tackle important problems. IIntroduction to Engineering Design is designed for educators looking to use project-based engineering design in their classroom.
While more and more undergraduate engineering programs are moving toward a multi-disciplinary capstone experience, there remains a need for a suitable textbook. The present text seeks to meet that need by providing a student friendly step by step template for this important and culminating academic journey beginning with the student design team's first meeting with the client to the final report and presentation. The text provides a wide range of design tools, a discussion of various design methodologies, a brief history of modern engineering, and a substantive consideration of engineering ethics. In addition, chapters are included on communication, team building and dealing with the inevitable obstacles that students encounter. Throughout the text, emphasis is placed upon the issues of environmental impact and the importance of diversity.
There is only a very limited number of physical systems that can be exactly described in terms of simple analytic functions. There are, however, a vast range of problems which are amenable to a computational approach. This book provides a concise, self-contained introduction to the basic numerical and analytic techniques, which form the foundations of the algorithms commonly employed to give a quantitative description of systems of genuine physical interest. The methods developed are applied to representative problems from classical and quantum physics.
Nanoscience and nanotechnology, the application of the research-based nanoscale science, have changed significantly over the last three and a half decades. The "e;bucky"e; ball, 60 carbon atoms arranged like a soccer ball, and an often-used symbol of nanotechnology, was discovered in 1985 and 4 years later scientists at IBM were able to manipulate xenon atoms on a surface. In the intervening years, nanotechnology has evolved from a singly focused research topic to an understanding that infiltrates every aspect of science and engineering disciplines. In addition, nanotechnology, and both naturally occurring and engineered nanomaterials, have become the focus of legal, environmental, and application and regulation disciplines. The first portion of this text serves as an introduction to nanotechnology: the history, mathematical concepts, and instruments required to study and manipulate the world at the atomic scale. The later portion of the text discusses the connectivity of nanotechnology to the more traditional scientific disciplines as well as emerging technologies.This text can serve as an introduction to the nanoscale for science, computer science, and engineering disciplines. It can also provide a valuable foundation for disciplines such as industrial hygiene, architecture, sociology, ethics, and the humanities. There does not exist an educational discipline, market segment, or career avenue which will not be impacted by nanotechnology.
This book presents a comprehensive optimization-based theory and framework that exploits the synergistic interactions and tradeoffs between process design and operational decisions that span different time scales. Conventional methods in the process industry often isolate decision making mechanisms with a hierarchical information flow to achieve tractable problems, risking suboptimal, even infeasible operations. In this book, foundations of a systematic model-based strategy for simultaneous process design, scheduling, and control optimization is detailed to achieve reduced cost and improved energy consumption in process systems. The material covered in this book is well suited for the use of industrial practitioners, academics, and researchers.In Chapter 1, a historical perspective on the milestones in model-based design optimization techniques is presented along with an overview of the state-of-the-art mathematical tools to solve the resulting complex problems. Chapters 2 and 3 discuss two fundamental concepts that are essential for the reader. These concepts are (i) mixed integer dynamic optimization problems and two algorithms to solve this class of optimization problems, and (ii) developing a model based multiparametric programming model predictive control. These tools are used to systematically evaluate the tradeoffs between different time-scale decisions based on a single high-fidelity model, as demonstrated on (i) design and control, (ii) scheduling and control, and (iii) design, scheduling, and control problems. We present illustrative examples on chemical processing units, including continuous stirred tank reactors, distillation columns, and combined heat and power regeneration units, along with discussions of other relevant work in the literature for each class of problems.
This book is written to address the issues relating to data gathering, data warehousing, and data analysis, all of which are useful when working with large amounts of data. Using practical examples of market intelligence, this book is designed to inspire and inform readers on how to conduct market intelligence by leveraging data and technology, supporting smart decision making. The book explains some suitable methodologies for data analysis that are based on robust statistical methods. For illustrative purposes, the author uses real-life data for all the examples in this book. In addition, the book discusses the concepts, techniques, and applications of digital media and mobile data mining.Hence, this book is a guide tool for policy makers, academics, and practitioners whose areas of interest are statistical inference, applied statistics, applied mathematics, business mathematics, quantitative techniques, and economic and social statistics.
Energy is a basic human need; technologies for energy conversion and use are fundamental to human survival. As energy technology evolves to meet demands for development and ecological sustainability in the 21st century, engineers need to have up-to-date skills and knowledge to meet the creative challenges posed by current and future energy problems. Further, engineers need to cultivate a commitment to and passion for lifelong learning which will enable us to actively engage new developments in the field. This undergraduate textbook companion seeks to develop these capacities in tomorrow's engineers in order to provide for future energy needs around the world. This book is designed to complement traditional texts in engineering thermodynamics, and thus is organized to accompany explorations of the First and Second Laws, fundamental property relations, and various applications across engineering disciplines. It contains twenty modules targeted toward meeting five often-neglected ABET outcomes: ethics, communication, lifelong learning, social context, and contemporary issues. The modules are based on pedagogies of liberation, used for decades in the humanities and social sciences for instilling critical thinking and reflective action in students by bringing attention to power relations in the classroom and in the world. This book is intended to produce a conversation and creative exploration around how to teach and learn thermodynamics differently. Because liberative pedagogies are at their heart relational, it is important to maintain spaces for discussing classroom practices with these modules, and for sharing ideas for implementing critical pedagogies in engineering contexts. The reader is therefore encouraged to visit the book's blog. Table of Contents: What and Why? / The First Law: Making Theory Relevant / The Second Law and Property Relations / Thinking Big Picture about Energy and Sustainability
The journey to becoming an exemplary engineering educator is one that is rarely simple and straightforward. Simply being exposed to active learning strategies or innovative pedagogies rarely leads to a transformation of one's own teaching. In this book, we present a collection of stories from exemplary engineering educators that are told in their own voices. These stories are shared to enable readers to immerse themselves in first-person recollections of transformation, involving engineering educators who changed their teaching strategies from the ways that they were taught as engineering undergraduate students to ways that more effectively fostered a conducive learning atmosphere for all students. It is our hope that providing stories of successful engineering educators might stimulate thoughtful and productive self-reflection on ways that we can each change our own teaching. These stories are not simple, linear stories of transformation. Instead, they highlight the complexities and nuances inherent to transforming the way that engineering faculty teach. Through our strategy of narrative storytelling, we hope to inspire future and current engineering educators to embark on their own journeys of teaching transformations. We conclude the book with some lessons that we learned during our readings of these stories, and invite readers to extract lessons of their own.
This book discusses the ways in which engineering educators are responding to the challenges that confront their profession. On the one hand, there is an overarching sustainability challenge: the need for engineers to relate to the problems brought to light in the debates about environmental protection, resource depletion, and climate change. There are also a range of societal challenges that are due to the permeation of science and technology into ever more areas of our societies and everyday lives, and finally, there are the intrinsic scientific and technological challenges stemming from the emergence of new fields of "technosciences" that mix science and technology in new combinations.In the book, the author discusses and exemplifies three contending response strategies on the part of engineers and engineering educators: a commercial strategy that links scientists and engineers into networks or systems of innovation; an academic strategy that reasserts the traditional values of science and engineering; and an integrative strategy that aims to combine scientific knowledge and engineering skills with cultural understanding and social responsibility by fostering what the author terms a "hybrid imagination."Professor Jamison combines scholarly analysis with personal reflections drawing on over forty years of experience as a humanist teaching science and engineering students about the broader social, political and cultural contexts of their fields. The book has been written as part of the Program of Research on Opportunities and Challenges in Engineering Education in Denmark (PROCEED), funded by the Danish Strategic Research Council, for which Professor Jamison has served as coordinator.
To understand modern science as a coherent story, it is essential to recognize the accomplishments of the ancient Hindus. They invented our base-ten number system and zero that are now used globally, carefully mapped the sky and assigned motion to the Earth in their astronomy, developed a sophisticated system of medicine with its mind-body approach known as Ayurveda, mastered metallurgical methods of extraction and purification of metals, including the so-called Damascus blade and the Iron Pillar of New Delhi, and developed the science of self-improvement that is popularly known as yoga. Their scientific contributions made impact on noted scholars globally: Aristotle, Megasthenes, and Apollonius of Tyana among the Greeks; Al-Biruni, Al-Khwarizmi, Ibn Labban, and Al-Uqlidisi, Al-Ja?iz among the Islamic scholars; Fa-Hien, Hiuen Tsang, and I-tsing among the Chinese; and Leonardo Fibbonacci, Pope Sylvester II, Roger Bacon, Voltaire and Copernicus from Europe. In the modern era, thinkers and scientists as diverse as Ralph Waldo Emerson, Johann Wolfgang von Goethe, Johann Gottfried Herder, Carl Jung, Max Muller, Robert Oppenheimer, Erwin Schrodinger, Arthur Schopenhauer, and Henry David Thoreau have acknowledged their debt to ancient Hindu achievements in science, technology, and philosophy.The American Association for the Advancement of Science (AAAS), one of the largest scientific organizations in the world, in 2000, published a timeline of 100 most important scientific finding in history to celebrate the new millennium. There were only two mentions from the non-Western world: (1) invention of zero and (2) the Hindu and Mayan skywatchers astronomical observations for agricultural and religious purposes. Both findings involved the works of the ancient Hindus.The Ancient Hindu Science is well documented with remarkable objectivity, proper citations, and a substantial bibliography. It highlights the achievements of this remarkable civilization through painstaking research of historical and scientific sources. The style of writing is lucid and elegant, making the book easy to read. This book is the perfect text for all students and others interested in the developments of science throughout history and among the ancient Hindus, in particular.
What is it like to be a researcher or a scientist? For young people, including graduate students and junior faculty members in universities, how can they identify good ideas for research? How do they conduct solid research to verify and realize their new ideas? How can they formulate their ideas and research results into high-quality articles, and publish them in highly competitive journals and conferences? What are effective ways to supervise graduate students so that they can establish themselves quickly in their research careers? In this book, Ling and Yang answer these questions in a step-by-step manner with specific and concrete examples from their first-hand research experience. Table of Contents: Acknowledgments / Preface / Basics of Research / Goals of Ph.D. Research / Getting Started: Finding New Ideas and Organizing Your Plans / Conducting Solid Research / Writing and Publishing Papers / Misconceptions and Tips for Paper Writing / Writing and Defending a Ph.D. Thesis / Life After Ph.D. / Summary / References / Author Biographies
Each one of us has views about education, how discipline should function, how individuals learn, how they should be motivated, what intelligence is, and the structures (content and subjects) of the curriculum. Perhaps the most important beliefs that (beginning) teachers bring with them are their notions about what constitutes "e;good teaching"e;. The scholarship of teaching requires that (beginning) teachers should examine (evaluate) these views in the light of knowledge currently available about the curriculum and instruction, and decide their future actions on the basis of that analysis. Such evaluations are best undertaken when classrooms are treated as laboratories of inquiry (research) where teachers establish what works best for them.Two instructor centred and two learner centred philosophies of knowledge, curriculum and instruction are used to discern the fundamental (basic) questions that engineering educators should answer in respect of their own beliefs and practice. They point to a series of classroom activities that will enable them to challenge their own beliefs, and at the same time affirm, develop, or change their philosophies of knowledge, curriculum and instruction.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.