Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book develops tools to handle C*-algebras arising as completions of convolution algebras of sections of line bundles over possibly non-Hausdorff groupoids. A fundamental result of Gelfand describes commutative C*-algebras as continuous functions on locally compact Hausdorff spaces. Kumjian, and later Renault, showed that Gelfand's result can be extended to include non-commutative C*-algebras containing a commutative C*-algebra. In their setting, the C*-algebras in question may be described as the completion of convolution algebras of functions on twisted Hausdorff groupoids with respect to a certain norm. However, there are many natural settings in which the Kumjian-Renault theory does not apply, in part because the groupoids which arise are not Hausdorff. In fact, non-Hausdorff groupoids have been a source of surprising counterexamples and technical difficulties for decades. Including numerous illustrative examples, this book extends the Kumjian-Renault theory to a much broader class of C*-algebras. This work will be of interest to researchers and graduate students in the area of groupoid C*-algebras, the interface between dynamical systems and C*-algebras, and related fields.
The real-variable theory of function spaces has always been at the core of harmonic analysis. In particular, the real-variable theory of the Hardy space is a fundamental tool of harmonic analysis, with applications and connections to complex analysis, partial differential equations, and functional analysis.This book is devoted to exploring properties of generalized Herz spaces and establishing a complete real-variable theory of Hardy spaces associated with local and global generalized Herz spaces via a totally fresh perspective. This means that the authors view these generalized Herz spaces as special cases of ball quasi-Banach function spaces.In this book, the authors first give some basic properties of generalized Herz spaces and obtain the boundedness and the compactness characterizations of commutators on them. Then the authors introduce the associated Herz¿Hardy spaces, localized Herz¿Hardy spaces, and weak Herz¿Hardy spaces, and develop a complete real-variable theory of these Herz¿Hardy spaces, including their various maximal function, atomic, molecular as well as various Littlewood¿Paley function characterizations. As applications, the authors establish the boundedness of some important operators arising from harmonic analysis on these Herz¿Hardy spaces. Finally, the inhomogeneous Herz¿Hardy spaces and their complete real-variable theory are also investigated.With the fresh perspective and the improved conclusions on the real-variable theory of Hardy spaces associated with ball quasi-Banach function spaces, all the obtained results of this book are new and their related exponents are sharp. This book will be appealing to researchers and graduate students who are interested in function spaces and their applications.
This volume originated in talks given in Cortona at the conference "e;Geometric aspects of harmonic analysis"e; held in honor of the 70th birthday of Fulvio Ricci. It presents timely syntheses of several major fields of mathematics as well as original research articles contributed by some of the finest mathematicians working in these areas. The subjects dealt with are topics of current interest in closely interrelated areas of Fourier analysis, singular integral operators, oscillatory integral operators, partial differential equations, multilinear harmonic analysis, and several complex variables.The work is addressed to researchers in the field.
This book gathers contributions on analytical, numerical, and application aspects of time-delay systems, under the paradigm of control theory, and discusses recent advances in these different contexts, also highlighting the interdisciplinary connections. The book will serve as a useful tool for graduate students and researchers in the fields of dynamical systems, automatic control, numerical methods, and functional analysis.
This book provides analytic tools to describe local and global behavior of solutions to Ito-stochastic differential equations with non-degenerate Sobolev diffusion coefficients and locally integrable drift. Regularity theory of partial differential equations is applied to construct such solutions and to obtain strong Feller properties, irreducibility, Krylov-type estimates, moment inequalities, various types of non-explosion criteria, and long time behavior, e.g., transience, recurrence, and convergence to stationarity. The approach is based on the realization of the transition semigroup associated with the solution of a stochastic differential equation as a strongly continuous semigroup in the Lp-space with respect to a weight that plays the role of a sub-stationary or stationary density. This way we obtain in particular a rigorous functional analytic description of the generator of the solution of a stochastic differential equation and its full domain. The existence of such a weight is shown under broad assumptions on the coefficients. A remarkable fact is that although the weight may not be unique, many important results are independent of it. Given such a weight and semigroup, one can construct and further analyze in detail a weak solution to the stochastic differential equation combining variational techniques, regularity theory for partial differential equations, potential, and generalized Dirichlet form theory. Under classical-like or various other criteria for non-explosion we obtain as one of our main applications the existence of a pathwise unique and strong solution with an infinite lifetime. These results substantially supplement the classical case of locally Lipschitz or monotone coefficients.We further treat other types of uniqueness and non-uniqueness questions, such as uniqueness and non-uniqueness of the mentioned weights and uniqueness in law, in a certain sense, of the solution.
Inequalities play a central role in mathematics with various applications in other disciplines. The main goal of this contributed volume is to present several important matrix, operator, and norm inequalities in a systematic and self-contained fashion. Some powerful methods are used to provide significant mathematical inequalities in functional analysis, operator theory and numerous fields in recent decades.Some chapters are devoted to giving a series of new characterizations of operator monotone functions and some others explore inequalities connected to log-majorization, relative operator entropy, and the Ando-Hiai inequality. Several chapters are focused on Birkhoff-James orthogonality and approximate orthogonality in Banach spaces and operator algebras such as C*-algebras from historical perspectives to current development.A comprehensive account of the boundedness, compactness, and restrictions of Toeplitz operators can be found in the book. Furthermore, an overview of the Bishop-Phelps-Bollobas theorem is provided. The state-of-the-art of Hardy-Littlewood inequalities in sequence spaces is given. The chapters are written in a reader-friendly style and can be read independently. Each chapter contains a rich bibliography. This book is intended for use by both researchers and graduate students of mathematics, physics, and engineering.
The purpose of this monograph is to offer an accessible and essentially self-contained presentation of some mathematical aspects of the Feynman path integral in non-relativistic quantum mechanics. In spite of the primary role in the advancement of modern theoretical physics and the wide range of applications, path integrals are still a source of challenging problem for mathematicians. From this viewpoint, path integrals can be roughly described in terms of approximation formulas for an operator (usually the propagator of a Schrodinger-type evolution equation) involving a suitably designed sequence of operators.In keeping with the spirit of harmonic analysis, the guiding theme of the book is to illustrate how the powerful techniques of time-frequency analysis - based on the decomposition of functions and operators in terms of the so-called Gabor wave packets - can be successfully applied to mathematical path integrals, leading to remarkable results and paving the way to a fruitful interaction.This monograph intends to build a bridge between the communities of people working in time-frequency analysis and mathematical/theoretical physics, and to provide an exposition of the present novel approach along with its basic toolkit. Having in mind a researcher or a Ph.D. student as reader, we collected in Part I the necessary background, in the most suitable form for our purposes, following a smooth pedagogical pattern. Then Part II covers the analysis of path integrals, reflecting the topics addressed in the research activity of the authors in the last years.
This book provides an introduction to recent developments in the theory of generalized harmonic analysis and its applications. It is well known that convolutions, differential operators and diffusion processes are interconnected: the ordinary convolution commutes with the Laplacian, and the law of Brownian motion has a convolution semigroup property with respect to the ordinary convolution. Seeking to generalize this useful connection, and also motivated by its probabilistic applications, the book focuses on the following question: given a diffusion process Xt on a metric space E, can we construct a convolution-like operator * on the space of probability measures on E with respect to which the law of Xt has the *-convolution semigroup property? A detailed analysis highlights the connection between the construction of convolution-like structures and disciplines such as stochastic processes, ordinary and partial differential equations, spectral theory, special functions and integral transforms.The book will be valuable for graduate students and researchers interested in the intersections between harmonic analysis, probability theory and differential equations.
Functional analysis is an important branch of mathematical analysis which deals with the transformations of functions and their algebraic and topological properties. Motivated by their large applicability to real life problems, applications of functional analysis have been the aim of an intensive study effort in the last decades, yielding significant progress in the theory of functions and functional spaces, differential and difference equations and boundary value problems, differential and integral operators and spectral theory, and mathematical methods in physical and engineering sciences. The present volume is devoted to these investigations. The publication of this collection of papers is based on the materials of the mini-symposium "Functional Analysis in Interdisciplinary Applications" organized in the framework of the Fourth International Conference on Analysis and Applied Mathematics (ICAAM 2018, September 6¿9, 2018). Presenting a widerange of topics and results, this book will appeal to anyone working in the subject area, including researchers and students interested to learn more about different aspects and applications of functional analysis. Many articles are written by experts from around the world, strengthening international integration in the fields covered. The contributions to the volume, all peer reviewed, contain numerous new results.This volume contains four different chapters. The first chapter contains the contributed papers focusing on various aspects of the theory of functions and functional spaces. The second chapter is devoted to the research on difference and differential equations and boundary value problems. The third chapter contains the results of studies on differential and integral operators and on the spectral theory. The fourth chapter is focused on the simulation of problems arising in real-world applications of applied sciences.
"Hypernumbers and Extrafunctions" presents a rigorous mathematical approach to operate with infinite values. First, concepts of real and complex numbers are expanded to include a new universe of numbers called hypernumbers which includes infinite quantities. This brief extends classical calculus based on real functions by introducing extrafunctions, which generalize not only the concept of a conventional function but also the concept of a distribution. Extrafucntions have been also efficiently used for a rigorous mathematical definition of the Feynman path integral, as well as for solving some problems in probability theory, which is also important for contemporary physics. This book introduces a new theory that includes the theory of distributions as a subtheory, providing more powerful tools for mathematics and its applications. Specifically, it makes it possible to solve PDE for which it is proved that they do not have solutions in distributions. Also illustrated in this text is how this new theory allows the differentiation and integration of any real function. This text can be used for enhancing traditional courses of calculus for undergraduates, as well as for teaching a separate course for graduate students.
The aim of this book is to concisely present fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. The book contains eight chapters covering various topics ranging from similarity and special types of matrices to Schur complements and matrix normality. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The book can be used as a text or a supplement for a linear algebra and matrix theory class or seminar for senior or graduate students. The only prerequisites are a decent background in elementary linear algebra and calculus. The book can also serve as a reference for instructors and researchers in the fields of algebra, matrix analysis, operator theory, statistics, computer science, engineering, operations research, economics, and other fields.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.