Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
As our title suggests, there are two aspects in the subject of this book. The first is the mathematical investigation of the dynamics of infinite systems of in teracting particles and the description of the time evolution of their states. The second is the rigorous derivation of kinetic equations starting from the results of the aforementioned investigation. As is well known, statistical mechanics started in the last century with some papers written by Maxwell and Boltzmann. Although some of their statements seemed statistically obvious, we must prove that they do not contradict what me chanics predicts. In some cases, in particular for equilibrium states, it turns out that mechanics easily provides the required justification. However things are not so easy, if we take a step forward and consider a gas is not in equilibrium, as is, e.g., the case for air around a flying vehicle. Questions of this kind have been asked since the dawn of the kinetic theory of gases, especially when certain results appeared to lead to paradoxical conclu sions. Today this matter is rather well understood and a rigorous kinetic theory is emerging. The importance of these developments stems not only from the need of providing a careful foundation of such a basic physical theory, but also to exhibit a prototype of a mathematical construct central to the theory of non-equilibrium phenomena of macroscopic size.
Nowadays algebra is understood basically as the general theory of algebraic oper ations and relations. It is characterised by a considerable intrinsic naturalness of its initial notions and problems, the unity of its methods, and a breadth that far exceeds that of its basic concepts. It is more often that its power begins to be displayed when one moves outside its own limits. This characteristic ability is seen when one investigates not only complete operations, but partial operations. To a considerable extent these are related to algebraic operators and algebraic operations. The tendency to ever greater generality is amongst the reasons that playa role in explaining this development. But other important reasons play an even greater role. Within this same theory of total operations (that is, operations defined everywhere), there persistently arises in its different sections a necessity of examining the emergent feature of various partial operations. It is particularly important that this has been found in those parts of algebra it brings together and other areas of mathematics it interacts with as well as where algebra finds applica tion at the very limits of mathematics. In this connection we mention the theory of the composition of mappings, category theory, the theory of formal languages and the related theory of mathematical linguistics, coding theory, information theory, and algebraic automata theory. In all these areas (as well as in others) from time to time there arises the need to consider one or another partial operation.
By a Hilbert-space operator we mean a bounded linear transformation be tween separable complex Hilbert spaces. Decompositions and models for Hilbert-space operators have been very active research topics in operator theory over the past three decades. The main motivation behind them is the in variant subspace problem: does every Hilbert-space operator have a nontrivial invariant subspace? This is perhaps the most celebrated open question in op erator theory. Its relevance is easy to explain: normal operators have invariant subspaces (witness: the Spectral Theorem), as well as operators on finite dimensional Hilbert spaces (witness: canonical Jordan form). If one agrees that each of these (i. e. the Spectral Theorem and canonical Jordan form) is important enough an achievement to dismiss any further justification, then the search for nontrivial invariant subspaces is a natural one; and a recalcitrant one at that. Subnormal operators have nontrivial invariant subspaces (extending the normal branch), as well as compact operators (extending the finite-dimensional branch), but the question remains unanswered even for equally simple (i. e. simple to define) particular classes of Hilbert-space operators (examples: hyponormal and quasinilpotent operators). Yet the invariant subspace quest has certainly not been a failure at all, even though far from being settled. The search for nontrivial invariant subspaces has undoubtly yielded a lot of nice results in operator theory, among them, those concerning decompositions and models for Hilbert-space operators. This book contains nine chapters.
In 1994, in my role as Technical Program Chair for the 17th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, I solicited proposals for mini-symposia to provide delegates with accessible summaries of important issues in research areas outside their particular specializations. Terry Peters and his colleagues submitted a proposal for a symposium on Fourier Trans forms and Biomedical Engineering whose goal was "to demystify the Fourier transform and describe its practical application in biomedi cal situations". This was to be achieved by presenting the concepts in straightforward, physical terms with examples drawn for the parti cipants work in physiological signal analysis and medical imaging. The mini-symposia proved to be a great success and drew a large and appreciative audience. The only complaint being that the time allocated, 90 minutes, was not adequate to allow the participants to elaborate their ideas adequately. I understand that this feedback helped the authors to develop this book.
What could be regarded as the beginning of a theory of commutators AB - BA of operators A and B on a Hilbert space, considered as a dis cipline in itself, goes back at least to the two papers of Weyl [3] {1928} and von Neumann [2] {1931} on quantum mechanics and the commuta tion relations occurring there. Here A and B were unbounded self-adjoint operators satisfying the relation AB - BA = iI, in some appropriate sense, and the problem was that of establishing the essential uniqueness of the pair A and B. The study of commutators of bounded operators on a Hilbert space has a more recent origin, which can probably be pinpointed as the paper of Wintner [6] {1947}. An investigation of a few related topics in the subject is the main concern of this brief monograph. The ensuing work considers commuting or "almost" commuting quantities A and B, usually bounded or unbounded operators on a Hilbert space, but occasionally regarded as elements of some normed space. An attempt is made to stress the role of the commutator AB - BA, and to investigate its properties, as well as those of its components A and B when the latter are subject to various restrictions. Some applica tions of the results obtained are made to quantum mechanics, perturba tion theory, Laurent and Toeplitz operators, singular integral trans formations, and Jacobi matrices.
Since the publication of Banach's treatise on the theory of linear operators, the literature on the theory of bases in topological vector spaces has grown enormously. Much of this literature has for its origin a question raised in Banach's book, the question whether every sepa rable Banach space possesses a basis or not. The notion of a basis employed here is a generalization of that of a Hamel basis for a finite dimensional vector space. For a vector space X of infinite dimension, the concept of a basis is closely related to the convergence of the series which uniquely correspond to each point of X. Thus there are different types of bases for X, according to the topology imposed on X and the chosen type of convergence for the series. Although almost four decades have elapsed since Banach's query, the conjectured existence of a basis for every separable Banach space is not yet proved. On the other hand, no counter examples have been found to show the existence of a special Banach space having no basis. However, as a result of the apparent overconfidence of a group of mathematicians, who it is assumed tried to solve the problem, we have many elegant works which show the tight connection between the theory of bases and structure of linear spaces.
The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction presents the progress that had been recently achieved in this area. The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd. This book includes the following cutting-edge features: an introduction to the state-of-the-art single-particle localization theory an extensive discussion of relevant technical aspects of the localization theorya thorough comparison of the multi-particle model with its single-particle counterpart a self-contained rigorous derivation of both spectral and dynamical localization in the multi-particle tight-binding Anderson model. Required mathematical background for the book includes a knowledge of functional calculus, spectral theory (essentially reduced to the case of finite matrices) and basic probability theory. This is an excellent text for a year-long graduate course or seminar in mathematical physics. It also can serve as a standard reference for specialists.
Small-radius tubular structures have attracted considerable attention in the last few years, and are frequently used in different areas such as Mathematical Physics, Spectral Geometry and Global Analysis. In this monograph, we analyse Laplace-like operators on thin tubular structures ("graph-like spaces''), and their natural limits on metric graphs. In particular, we explore norm resolvent convergence, convergence of the spectra and resonances. Since the underlying spaces in the thin radius limit change, and become singular in the limit, we develop new tools such as norm convergence of operators acting in different Hilbert spaces, an extension of the concept of boundary triples to partial differential operators, and an abstract definition of resonances via boundary triples. These tools are formulated in an abstract framework, independent of the original problem of graph-like spaces, so that they can be applied in many other situations where the spaces are perturbed.
Rygtet taler sandt. Narrating Truth er en antologi om nonfiktion.Bogen er oplagt til engelskundervisningen på ungdomsuddannelserne, men også som isbryder til tværfaglige forløb og inspiration til større opgaver.I tema-inddelte kapitler behandles narrativ journalistik, sammensværgelsesteorier, undskyldningsretorik, true crime, memoirer og faglig formidling. Der er arbejdsspørgsmål til teksterne i bogen samt til udvalgte dokumentarfilm og podcasts, der ligger og venter ude i verden. Et teorikapitel til sidst kommer med forslag og hjælp til, hvordan man generelt kan tage hul på læsninger og analyser af diverse sagprosa-genrer.Antologien byder på alfonser, astronomer, et dekadent hestevæddeløb, victorianske debatindlæg, tegnede memoirer, propaganda, tilståelser, Instagram-opslag, populærvidenskab, lingvistik og meget mere i et forsøg på at fremme nysgerrigheden og styrke fagligheden omkring nonfiktion.Teksterne og didaktiseringen krydres med oplæg til samtaler og kreative skriveøvelser, og på narratingtruth.org kan man i sandhed grave sig dybere ned i flere opgaver og perspektiveringer.
Approximation of continuous functions on compact spaces.- Approximation of continuous functions on locally compact spaces.- Approximation of continuous differentiable functions.- Approximations theorems in locally convex lattices.
Initial topology, topological vector spaces, weak topology.- Convexity, separation theorems, locally convex spaces.- Polars, bipolar theorem, polar topologies.- The theorems of Tikhonov and Alaoglu-Bourbaki.- The theorem of Mackey-Arens.- Topologies on E'''', quasi-barrelled and barrelled spaces.- Reflexivity.- Completeness.- Locally convex final topology, topology of D(\Omega).- Precompact -- compact - complete.- The theorems of Banach--Dieudonne and Krein-Smulian.- The theorems of Eberlein--Grothendieck and Eberlein-Smulian.- The theorem of Krein.- Weakly compact sets in L_1(\mu).- \cB_0''''=\cB.- The theorem of Krein-Milman.- A The theorem of Hahn-Banach.- B Baire''s theorem and the uniform boundedness theorem.
This book constitutes a concise introductory course on Functional Analysis for students who have studied calculus and linear algebra. The topics covered are Banach spaces, continuous linear transformations, Frechet derivative, geometry of Hilbert spaces,
This volume consists of the proofs of 391 problems in Real Analysis: Theory of Measure and Integration (3rd Edition).Most of the problems in Real Analysis are not mere applications of theorems proved in the book but rather extensions of the proven theorems or related theorems. Proving these problems tests the depth of understanding of the theorems in the main text.This volume will be especially helpful to those who read Real Analysis in self-study and have no easy access to an instructor or an advisor.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.