Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book gathers outstanding papers on numerical modeling in Mechanical Engineering (Volume 2) as part of the 2-volume proceedings of the 4th International Conference on Numerical Modeling in Engineering (NME 2021), which was held in Ghent, Belgium, on 24-25 August 2021. The overall objective of the conference was to bring together international scientists and engineers in academia and industry from fields related to advanced numerical techniques, such as the finite element method (FEM), boundary element method (BEM), isogeometric analysis (IGA), etc., and their applications to a wide range of engineering disciplines. This book addresses numerical simulations of various mechanical and materials engineering industrial applications such as aerospace applications, acoustic analysis, bio-mechanical applications, contact problems and wear, heat transfer analysis, vibration and dynamics, transient analysis, nonlinear analysis, composite materials, polymers, metal alloys, fracture mechanics, fatigue of materials, creep, mechanical behavior, micro-structure, phase transformation, and crystal plasticity.
This open access volume compiles student reports from the 2022 Simula Summer School in Computational Physiology. The reports provide an overview of some tools available to model physiology in excitable tissues across scales and scientific questions. In 2022, Simula held the eighth annual Summer School in Computational Physiology in collaboration with the University of Oslo (UiO) and the University of California, San Diego (UCSD). Each year, the course focuses on modeling excitable tissues, with a special interest in cardiac physiology and neuroscience. Group research projects conducted by graduate students from around the world result in reports addressing problems of physiological importance. Reports may not necessarily represent new scientific results; rather, they can reproduce or supplement earlier studies.Reports from seven of the summer projects are included as separate chapters. The topics represented include multiscale mechanics, electrophysiology, pharmacology, and machine learning.
This book is a collection of contributions covering the major subjects in numerical simulation of space and astrophysical plasma. It introduces the different approaches and methods to model plasma, the necessary computational codes, and applications in the field. The book is rooted in the previous work Space Plasma Simulation (Springer, 2003) and includes the latest developments. It is divided into three parts and all chapters start with an introduction motivating the topic and its use in research and ends with a discussion of its applications. The chapters of the first part contain tutorials of the different basic approaches needed to perform space plasma simulations. This part is particularly useful for graduate students to master the subject. The second part presents more advanced materials for students and researchers who already work with pre-existing codes but want to implement the recent progresses made in the field. The last part of the bookdiscusses developments in the area for researchers who are actively working on advanced simulation approaches like higher order schemes and artificial intelligence, agent-based technologies for multiscale and multi-dimensional systems, which represent the recent innovative contributions made in space plasma research.
This proceedings gather a selection of peer-reviewed papers presented at the 9th International Conference on Fracture Fatigue and Wear (FFW 2021), held in the city of Ghent, Belgium on 2-3 August 2021. The contributions, prepared by international scientists and engineers, cover the latest advances in and innovative applications of fracture mechanics, fatigue of materials, tribology, and wear of materials. In addition, they discuss industrial applications and cover theoretical and analytical methods, numerical simulations and experimental techniques. The book is intended for academics, including graduate students and researchers, as well as industrial practitioners working in the areas of fracture fatigue and wear.
This book discusses numerical methods for solving time-fractional evolution equations. The approach is based on first discretizing in the spatial variables by the Galerkin finite element method, using piecewise linear trial functions, and then applying suitable time stepping schemes, of the type either convolution quadrature or finite difference. The main concern is on stability and error analysis of approximate solutions, efficient implementation and qualitative properties, under various regularity assumptions on the problem data, using tools from semigroup theory and Laplace transform. The book provides a comprehensive survey on the present ideas and methods of analysis, and it covers most important topics in this active area of research. It is recommended for graduate students and researchers in applied and computational mathematics, particularly numerical analysis.
In the third and final book of his iconic piano etudes György Ligeti charts a new path relative to the rest of his musical output, representing a significant arrival in a composer¿s oeuvre known for its stylistic transformations. This monograph is the first dedicated study of these capstone works, investigating them through a novel lens of statistical-graphical analysis that illuminates their compositional uniqueness as well as broader questions regarding the perception of stability in musical texture.With nearly 200 graphical illustrations and a detailed commentary, this examination reveals the unique manner in which Ligeti treads between tonality and atonality¿a key idea in his late style¿and the centrality of processes related to broader scale areas (or ¿macroharmony¿) in articulating structures and narratives. The analytical techniques developed here are a powerful tool for investigating macroharmonic stability that can be applied to a wide range of repertoire beyond these works.This book is intended for graduate-level and professional music theorists, musicologists, performers and mathematicians.
This book provides practical demonstrations of how to carry out definite integrals with Monte Carlo methods using Mathematica. Random variates are sampled by the inverse transform method and the acceptance-rejection method using uniform, linear, Gaussian, and exponential probability distribution functions. A chapter on the application of the Variational Quantum Monte Carlo method to a simple harmonic oscillator is included. These topics are all essential for students of mathematics and physics. The author includes thorough background on each topic covered within the book in order to help readers understand the subject. The book also contains many examples to show how the methods can be applied.
The Mathematics of Errors presents an original, rigorous and systematic approach to the calculus of errors, targeted at both the engineer and the mathematician.Starting from Gauss's original point of view, the book begins as an introduction suitable for graduate students, leading to recent developments in stochastic analysis and Malliavin calculus, including contributions by the author. Later chapters, aimed at a more mature audience, require some familiarity with stochastic calculus and Dirichlet forms. Sensitivity analysis, in particular, plays an important role in the book. Detailed applications in a range of fields, such as engineering, robotics, statistics, financial mathematics, climate science, or quantum mechanics are discussed through concrete examples. Throughout the book, error analysis is presented in a progressive manner, motivated by examples and appealing to the reader¿s intuition.By formalizing the intuitive concept of error and richly illustrating its scope for application, this book provides readers with a blueprint to apply advanced mathematics in practical settings. As such, it will be of immediate interest to engineers and scientists, whilst providing mathematicians with an original presentation.Nicolas Bouleau has directed the mathematics center of the Ecole des Ponts ParisTech for more than ten years. He is known for his theory of error propagation in complex models. After a degree in engineering and architecture, he decided to pursue a career in mathematics under the influence of Laurent Schwartz. He has also written on the production of knowledge, sustainable economics and mathematical models in finance. Nicolas Bouleau is a recipient of the Prix Montyon from the French Academy of Sciences.
This book presents the state of the art in High-Performance Computing on modern supercomputer architectures. It addresses trends in hardware and software development in general. The contributions cover a broad range of topics, from performance evaluations in context with power efficiency to Computational Fluid Dynamics and High-Performance Data Analytics. In addition, they explore new topics like the use of High-Performance Computers in the field of Artificial Intelligence and Machine Learning. All contributions are based on selected papers presented in 2021 at the 31st Workshop on Sustained Simulation Performance, WSSP31, held at HLRS in Stuttgart, Germany, and WSSP32, held at Tohoku University in Sendai, Japan.
This book presents a novel approach to the classical scientific discipline of Structural Engineering, which is inspired by numerous current applications from domains of Civil, Mechanical or Aerospace Engineering. The main goal of this book is to help with making the best choice between accuracy and efficiency, when it comes to building the most suitable structural models by practising engineers using modern computational tools available in commercial software products (SAP, FEAP, ANSYS ¿) for which we have carried out many developments that have been become the main reference in the field. Any development of this kind is not a mere modification of discrete approximation, but a thorough treatment with a sound theoretical formulation based upon Hu-Washizu variational principle with independent rotation field, its corresponding regularization and finally the most appropriate finite element interpolation that can match those used for structural elements. Proposed approach allows usto provide a unified discrete approximation of complex structural assemblies and greatly simplify the modeling task for structural engineers. Thus, in conclusion, this book can also be perceived as the theoretical manual for using modern computer models successfully by practising engineers.
This book constitutes the refereed proceedings of the 14th International Conference on Metaheuristics, MIC 2022, held in Syracuse, Italy, in July 2022.The 48 full papers together with 17 short papers presented were carefully reviewed and selected from 72 submissions. The papers detail metaheuristic techniques.Chapter ¿Evaluating the Effects of Chaos in Variable Neighbourhood Search¿ is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book constitutes the proceedings of the 17th International Conference and Workshops on Algorithms and Computation, WALCOM 2023, which took place in Hsinchu, Taiwan, in March 2023.The 30 full papers presented together with 2 invited papers were carefully reviewed and selected from 75 submissions. They cover topics such as: computational geometry; string algorithm; optimization; graph algorithm; approximation algorithm; and parameterized complexity.
This book presents recent advances of Bayesian inference in structured tensor decompositions. It explains how Bayesian modeling and inference lead to tuning-free tensor decomposition algorithms, which achieve state-of-the-art performances in many applications, includingblind source separation;social network mining;image and video processing;array signal processing; and,wireless communications.The book begins with an introduction to the general topics of tensors and Bayesian theories. It then discusses probabilistic models of various structured tensor decompositions and their inference algorithms, with applications tailored for each tensor decomposition presented in the corresponding chapters. The book concludes by looking to the future, and areas where this research can be further developed.Bayesian Tensor Decomposition for Signal Processing and Machine Learning is suitable for postgraduates and researchers with interests in tensor data analytics and Bayesian methods.
The book provides a pedagogic and comprehensive introduction to homogenization theory with a special focus on problems set for non-periodic media. The presentation encompasses both deterministic and probabilistic settings. It also mixes the most abstract aspects with some more practical aspects regarding the numerical approaches necessary to simulate such multiscale problems. Based on lecture courses of the authors, the book is suitable for graduate students of mathematics and engineering.¿Cet ouvrage est une introduction pédagogique à la théorie de l¿homogénéisation, et aux approches numériques associées, pour la compréhension et la simulation des problèmes à plusieurs échelles. La présentation est axée sur les différentes hypothèses possibles pour mettre en ¿uvre la théorie, selon que le milieu ambiant a une géométrie périodique ou non. Le public visé est celui des cycles M et D des universités ainsi que celui des écoles d¿ingénieurs et formations équivalentes.
The book presents select proceedings of Global meet on 'Computational Modelling and Simulation, Recent Innovations, Challenges and Perspectives, 2020. This book covers leading-edge technologies from different domains such as computation in optimization and control, multiscale and multiphysics modeling and computation analysis, environmental modeling, modeling approaches to enterprise systems and services, finite element analysis, dependability and security, high-performance computation/cloud computing applications, computational biology and chemistry and computational mechanics. The primary goal of this book is to strengthen pre-eminence in computational modeling and simulation by catalyzing the transformative use of innovative developments in a wide range of disciplines to achieve lasting societal impact. The book discusses on how to perform simulation of large complex dynamic systems in an efficient manner using advanced computational analysis. The inter-disciplinary nature of the book would be a valuable reference for academicians and research scientists, industrialists interested in modelling and simulation driven by computational technology.
Dieses kompakte Mathematikbuch vermittelt den Studierenden Kenntnisse, die notwendig sind, um die Inhalte der Lehrbücher Elektrotechnik für Ingenieure 1 bis 3 zu verstehen. Selbstverständlich kann es auch von Studierenden anderer Fachrichtungen genutzt werden.
This book constitutes the refereed proceedings of the 21st International Workshop, IWDW 2022, held in Guilin, China, during November 18-19, 2022. The 14 full papers included in this book were carefully reviewed and selected from 30 submissions. They were organized in topical sections as follows: Steganology, Forensics and Security Analysis, Watermarking.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.