Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This introductory textbook for a graduate course in pure mathematics provides a gateway into the two difficult fields of algebraic geometry and commutative algebra. Algebraic geometry, supported fundamentally by commutative algebra, is a cornerstone of pure mathematics. Along the lines developed by Grothendieck, this book delves into the rich interplay between algebraic geometry and commutative algebra. A selection is made from the wealth of material in the discipline, along with concise yet clear definitions and synopses.
The many diverse articles presented in these three volumes, collected on the occasion of Alexander Grothendieck's sixtieth birthday and originally published in 1990, were offered as a tribute to one of the world's greatest living mathematicians. Grothendieck changed the very way we think about many branches of mathematics. Many of his ideas, revolutionary when introduced, now seem so natural as to have been inevitable. Indeed, it is difficult to fully grasp the influence his vast contributions to modern mathematics have subsequently had on new generations of mathematicians.Many of the groundbreaking contributions in these volumes contain material that is now considered foundational to the subject. Topics addressed by these top-notch contributors match the breadth of Grothendieck's own interests, including: functional analysis, algebraic geometry, algebraic topology, number theory, representation theory, K-theory, category theory, and homological algebra.CONTRIBUTORS to Volume II: P. Cartier; C. Contou-Carrère; P. Deligne; T. Ekedahl; G. Faltings; J.-M. Fontaine; H. Hamm; Y. Ihara; L. Illusie; M. Kashiwara; V.A. Kolyvagin; R. Langlands; Lé D.T.; D. Shelstad; and A. Voros.
Algebraic Geometry often seems very abstract, but in fact it is full of concrete examples and problems. This side of the subject can be approached through the equations of a variety, and the syzygies of these equations are a necessary part of the study. This book is the first textbook-level account of basic examples and techniques in this area. It illustrates the use of syzygies in many concrete geometric considerations, from interpolation to the study of canonical curves. The text has served as a basis for graduate courses by the author at Berkeley, Brandeis, and in Paris. It is also suitable for self-study by a reader who knows a little commutative algebra and algebraic geometry already. As an aid to the reader, the appendices provide summaries of local cohomology and commutative algebra, tying together examples and major results from a wide range of topics.
The theory of Frobenius splittings has made a significant impact in the study of the geometry of flag varieties and representation theory. This work, unique in book literature, systematically develops the theory and covers all its major developments.Key features:* Concise, efficient exposition unfolds from basic introductory material on Frobenius splittings-definitions, properties and examples-to cutting edge research* Studies in detail the geometry of Schubert varieties, their syzygies, equivariant embeddings of reductive groups, Hilbert Schemes, canonical splittings, good filtrations, among other topics* Applies Frobenius splitting methods to algebraic geometry and various problems in representation theory* Many examples, exercises, and open problems suggested throughout* Comprehensive bibliography and index This book will be an excellent resource for mathematicians and graduate students in algebraic geometry and representation theory of algebraic groups.
Algebra, geometry and topology cover a variety of different, but intimately related research fields in modern mathematics. This book focuses on specific aspects of this interaction. The present volume contains refereed papers which were presented at the International Conference "Experimental and Theoretical Methods in Algebra, Geometry and Topology", held in Eforie Nord (near Constanta), Romania, during 20-25 June 2013. The conference was devoted to the 60th anniversary of the distinguished Romanian mathematicians Alexandru Dimca and Stefan Papadima. The selected papers consist of original research work and a survey paper. They are intended for a large audience, including researchers and graduate students interested in algebraic geometry, combinatorics, topology, hyperplane arrangements and commutative algebra. The papers are written by well-known experts from different fields of mathematics, affiliated to universities from all over the word, they cover a broad range of topics and explore the research frontiers of a wide variety of contemporary problems of modern mathematics.
In the study of algebraic/analytic varieties a key aspect is the description of the invariants of their singularities. This book targets the challenging non-isolated case. Let f be a complex analytic hypersurface germ in three variables whose zero set has a 1-dimensional singular locus. We develop an explicit procedure and algorithm that describe the boundary M of the Milnor fiber of f as an oriented plumbed 3-manifold. This method also provides the characteristic polynomial of the algebraic monodromy. We then determine the multiplicity system of the open book decomposition of M cut out by the argument of g for any complex analytic germ g such that the pair (f,g) is an ICIS. Moreover, the horizontal and vertical monodromies of the transversal type singularities associated with the singular locus of f and of the ICIS (f,g) are also described. The theory is supported by a substantial amount of examples, including homogeneous and composed singularities and suspensions. The properties peculiar to M are also emphasized.
The first part of the book studies pseudo-periodic maps of a closed surface of genus greater than or equal to two. This class of homeomorphisms was originally introduced by J. Nielsen in 1944 as an extension of periodic maps. In this book, the conjugacy classes of the (chiral) pseudo-periodic mapping classes are completely classified, and Nielsen's incomplete classification is corrected. The second part applies the results of the first part to the topology of degeneration of Riemann surfaces. It is shown that the set of topological types of all the singular fibers appearing in one parameter holomorphic families of Riemann surfaces is in a bijective correspondence with the set of conjugacy classes of the pseudo-periodic maps of negative twists. The correspondence is given by the topological monodromy.
Stochastic Geometry is the mathematical discipline which studies mathematical models for random geometric structures, as they appear frequently in almost all natural sciences or technical fields. Although its roots can be traced back to the 18th century (the Buffon needle problem), the modern theory of random sets was founded by D. Kendall and G. Matheron in the early 1970's. Its rapid development was influenced by applications in Spatial Statistics and by its close connections to Integral Geometry. The volume "Stochastic Geometry" contains the lectures given at the CIME summer school in Martina Franca in September 1974. The four main lecturers covered the areas of Spatial Statistics, Random Points, Integral Geometry and Random Sets, they are complemented by two additional contributions on Random Mosaics and Crystallization Processes. The book presents an up-to-date description of important parts of Stochastic Geometry.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.