Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The many diverse articles presented in these three volumes, collected on the occasion of Alexander Grothendieck's sixtieth birthday and originally published in 1990, were offered as a tribute to one of the world's greatest living mathematicians. Grothendieck changed the very way we think about many branches of mathematics. Many of his ideas, revolutionary when introduced, now seem so natural as to have been inevitable. Indeed, it is difficult to fully grasp the influence his vast contributions to modern mathematics have subsequently had on new generations of mathematicians.Many of the groundbreaking contributions in these volumes contain material that is now considered foundational to the subject. Topics addressed by these top-notch contributors match the breadth of Grothendieck's own interests, including: functional analysis, algebraic geometry, algebraic topology, number theory, representation theory, K-theory, category theory, and homological algebra.CONTRIBUTORS to Volume II: P. Cartier; C. Contou-Carrère; P. Deligne; T. Ekedahl; G. Faltings; J.-M. Fontaine; H. Hamm; Y. Ihara; L. Illusie; M. Kashiwara; V.A. Kolyvagin; R. Langlands; Lé D.T.; D. Shelstad; and A. Voros.
This volume! aims at introducing some basic ideas for studying approxima- tion processes and, more generally, discrete processes. The study of discrete processes, which has grown together with the study of infinitesimal calcu- lus, has become more and more relevant with the use of computers. The volume is suitably divided in two parts. In the first part we illustrate the numerical systems of reals, of integers as a subset of the reals, and of complex numbers. In this context we intro- duce, in Chapter 2, the notion of sequence which invites also a rethinking of the notions of limit and continuity2 in terms of discrete processes; then, in Chapter 3, we discuss some elements of combinatorial calculus and the mathematical notion of infinity. In Chapter 4 we introduce complex num- bers and illustrate some of their applications to elementary geometry; in Chapter 5 we prove the fundamental theorem of algebra and present some of the elementary properties of polynomials and rational functions, and of finite sums of harmonic motions. In the second part we deal with discrete processes, first with the process of infinite summation, in the numerical case, i.e., in the case of numerical series in Chapter 6, and in the case of power series in Chapter 7. The last chapter provides an introduction to discrete dynamical systems; it should be regarded as an invitation to further study.
* Contains research and survey articles by well known and respected mathematicians on recent developments and research trends in differential geometry and topology* Dedicated in honor of Lieven Vanhecke, as a tribute to his many fruitful and inspiring contributions to these fields* Papers include all necessary introductory and contextual material to appeal to non-specialists, as well as researchers and differential geometers
In diesem dritten Teil der mathematischen Physik habe ich versucht, die Quantenmechanik axiomatisch aufzubauen und zu relevanten Anwendungen zu gelangen. In der axiomatischen Literatur gewinnt man manchmal den Eindruck, es gehe vornehmlich darum, durch veredelnde Abstraktionsprozesse die Physik von allen irdischen Schlacken zu befreien und sie dementsprechend dem ein- fachen Verstand zu entrucken. Hier wird jedoch das Ziel verfolgt, konkrete Resultate zu liefern, die sich mit experimentellen Tatsachen vergleichen lassen. Alles andere ist nur als Hilfsmittel zu betrachten und nach pragmatischen Ge- sichtspunkten auszuwahlen. Aber gerade deswegen scheint es mir geboten, die Methoden der neueren Mathematik heranzuziehen. Nur durch sie gewinnt das Gewebe des logischen Fadens eine glatte Struktur, sonst verfilzt es sich, be- sonders bei der Theorie unbeschrankter Operatoren, in einem Gestrupp unuber- schaubarer Details. Ich habe mich bemuht, dieses mathematische Rustzeug, welches auch den Grundstock fur den nachsten Band bildet, moglichst voll- standig zu bringen. Viele Beweise muten allerdings in Ubungsaufgaben unter- gebracht werden. Das Hauptaugenmerk habe ich darauf gelegt, die ublichen Rechnungen ungewisser Genauigkeit durch solche mit Fehlergrenzen zu er- setzen, um so die rauhen Sitten der theoretischen Physik zu den kultivierteren der Experimentalphysik zu verfeinern. Die vorangegangenen Bande werden im Text mit (I, ... ) und (II, ... ) zitiert, die allgemeine mathematische Terminologie ist in I zu finden. Die riesige Literatur uber den Gegenstand konnte nur sporadisch angefuhrt werden, der historisch interessierte Leser kann etwas mehr daruber in dem umfassenden Werk von M. Reed und B. Simon finden.
A small conference was held in September 1986 to discuss new applications of elliptic functions and modular forms in algebraic topology, which had led to the introduction of elliptic genera and elliptic cohomology. The resulting papers range, fom these topics through to quantum field theory, with considerable attention to formal groups, homology and cohomology theories, and circle actions on spin manifolds. Ed. Witten's rich article on the index of the Dirac operator in loop space presents a mathematical treatment of his interpretation of elliptic genera in terms of quantum field theory. A short introductory article gives an account of the growth of this area prior to the conference.
For Students Congratulations! You are about to take a course in mathematical proof. If you are nervous about the whole thing, this book is for you (if not, please read the second and third paragraphs in the introduction for professors following this, so you won't feel left out). The rumors are true; a first course in proof may be very hard because you will have to do three things that are probably new to you: 1. Read mathematics independently. 2. Understand proofs on your own. :1. Discover and write your own proofs. This book is all about what to do if this list is threatening because you "never read your calculus book" or "can't do proofs. " Here's the good news: you must be good at mathematics or you wouldn't have gotten this far. Here's the bad news: what worked before may not work this time. Success may lie in improving or discarding many habits that were good enough once but aren't now. Let's see how we've gotten to a point at which someone could dare to imply that you have bad habits. l The typical elementary and high school mathematics education in the United States tends to teach students to have ineffective learning habits, 1 In the first paragraph, yet. xiv Introduction and we blush to admit college can be just as bad.
Algebra, geometry and topology cover a variety of different, but intimately related research fields in modern mathematics. This book focuses on specific aspects of this interaction. The present volume contains refereed papers which were presented at the International Conference "Experimental and Theoretical Methods in Algebra, Geometry and Topology", held in Eforie Nord (near Constanta), Romania, during 20-25 June 2013. The conference was devoted to the 60th anniversary of the distinguished Romanian mathematicians Alexandru Dimca and Stefan Papadima. The selected papers consist of original research work and a survey paper. They are intended for a large audience, including researchers and graduate students interested in algebraic geometry, combinatorics, topology, hyperplane arrangements and commutative algebra. The papers are written by well-known experts from different fields of mathematics, affiliated to universities from all over the word, they cover a broad range of topics and explore the research frontiers of a wide variety of contemporary problems of modern mathematics.
In the study of algebraic/analytic varieties a key aspect is the description of the invariants of their singularities. This book targets the challenging non-isolated case. Let f be a complex analytic hypersurface germ in three variables whose zero set has a 1-dimensional singular locus. We develop an explicit procedure and algorithm that describe the boundary M of the Milnor fiber of f as an oriented plumbed 3-manifold. This method also provides the characteristic polynomial of the algebraic monodromy. We then determine the multiplicity system of the open book decomposition of M cut out by the argument of g for any complex analytic germ g such that the pair (f,g) is an ICIS. Moreover, the horizontal and vertical monodromies of the transversal type singularities associated with the singular locus of f and of the ICIS (f,g) are also described. The theory is supported by a substantial amount of examples, including homogeneous and composed singularities and suspensions. The properties peculiar to M are also emphasized.
The first part of the book studies pseudo-periodic maps of a closed surface of genus greater than or equal to two. This class of homeomorphisms was originally introduced by J. Nielsen in 1944 as an extension of periodic maps. In this book, the conjugacy classes of the (chiral) pseudo-periodic mapping classes are completely classified, and Nielsen's incomplete classification is corrected. The second part applies the results of the first part to the topology of degeneration of Riemann surfaces. It is shown that the set of topological types of all the singular fibers appearing in one parameter holomorphic families of Riemann surfaces is in a bijective correspondence with the set of conjugacy classes of the pseudo-periodic maps of negative twists. The correspondence is given by the topological monodromy.
The notion of a ?xed point plays a crucial role in numerous branches of mat- maticsand its applications. Informationabout the existence of such pointsis often the crucial argument in solving a problem. In particular, topological methods of ?xed point theory have been an increasing focus of interest over the last century. These topological methods of ?xed point theory are divided, roughly speaking, into two types. The ?rst type includes such as the Banach Contraction Principle where the assumptions on the space can be very mild but a small change of the map can remove the ?xed point. The second type, on the other hand, such as the Brouwer and Lefschetz Fixed Point Theorems, give the existence of a ?xed point not only for a given map but also for any its deformations. This book is an exposition of a part of the topological ?xed and periodic point theory, of this second type, based on the notions of Lefschetz and Nielsen numbers. Since both notions are homotopyinvariants, the deformationis used as an essential method, and the assertions of theorems typically state the existence of ?xed or periodic points for every map of the whole homotopy class, we refer to them as homotopy methods of the topological ?xed and periodic point theory.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.