Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book highlights the methods to engineer dissipative and magnetic nonlinear waves propagating in nonlinear systems. In the first part of the book, the authors present methodologically mathematical models of nonlinear waves propagating in one- and two-dimensional nonlinear transmission networks without/with dissipative elements. Based on these models, the authors investigate the generation and the transmission of nonlinear modulated waves, in general, and solitary waves, in particular, in networks under consideration. In the second part of the book, the authors develop basic theoretical results for the dynamics matter-wave and magnetic-wave solitons of nonlinear systems and of Bose¿Einstein condensates trapped in external potentials, combined with the time-modulated nonlinearity. The models treated here are based on one-, two-, and three-component non-autonomous Gross¿Pitaevskii equations. Based on the Heisenberg model of spin¿spin interactions, the authors also investigate the dynamics of magnetization in ferromagnet with or without spin-transfer torque. This research book is suitable for physicists, mathematicians, engineers, and graduate students in physics, mathematics, and network and information engineering.
This book shows how the analytic properties in the complex energy plane of the Green's functions of many particle systems account for the physical effects (level shifts, damping, instabilities) characteristic of interacting systems. It concentrates on general physical principles and, while it does not discuss experiments in detail, includes introductions to topics of current research interest, such as singularities (X-ray, Kondo) associated with transient perturbations in an electron gas, the Mott metal-insulator transition in correlated electron systems, and the phenomenon of high Tc superconductivity.This invaluable book grew out of a course of graduate lectures given by S Doniach at the University of London. It will appeal to beginning graduate students in theoretical solid state physics as an introduction to more comprehensive or more specialized texts and also to experimentalists who would like a quick view of the subject. A basic knowledge of solid state physics and quantum mechanics at graduate level is assumed.
This book highlights recent developments related to fabrication and utilization of nanoparticle-engineered metal matrices and their composites linked to the heavy industries, temperature fasteners, high-pressure vessels, and heavy turbines, etc. The mechanical properties of newly developed metallic composites are discussed in terms of tensile modulus, hardness, ductility, crack propagation, elongation, and chemical inertness. This book presents the design, development, and implementation of state-of-the-art methods linked to nanoparticle-reinforced metal nanocomposites for a wide variety of applications. Therefore, in a nutshell, this book provides a unique platform for researchers and professionals in the area of nanoparticle-reinforced metal nanocomposites.
Piezoelectric and thermoelectric materials represent emerging cutting-edge technological materials for energy harvesting for high-value-added applications. Although these materials have been exhaustively exploited for decades, researchers around the world continue to find technological and scientific innovations that must be disseminated to the engineers of yesterday, today, and tomorrow. Piezoelectric materials, through mechanical stresses applied to them, are capable of generating electricity, while thermoelectric materials are capable of producing electricity thanks to the heat applied to them. Therefore, the direct application of these materials is in energy harvesting, which, together with the reduction of materials, leads them to portable and wearable functional applications. The purpose of this work is to disseminate some of the latest scientific and technological advances by different researchers around the world in the development of devices and applications based on these materials. The book compiles state-of-the-art fundamentals, current uses, as well as emerging applications of piezoelectric and thermoelectric materials. It is a source of inspiration for continued scientific research on the commercial, industrial, and military applications of these materials. Furthermore, it is a valuable and informative resource for undergraduate and graduate students, as well as experts and researchers in the field.
In this second edition, most chapters of the first edition, which published in 2017, have been revised and recent advancement of electron microscopy such as differential phase contrast (DPC) STEM, sparse-coding image processing and quantum electron microscopy have been supplemented with further details. This book explains the basis of imaging and diffraction in transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) in the style of a textbook. The book focuses on the explanation of electron microscopic imaging of TEM and STEM without including in the main text distracting information on basic knowledge of crystal diffraction, wave optics, electron lens, and scattering and diffraction theories, which are explained separately in the appendices. The comprehensive explanation is provided on the basis of Fourier transform theory, and this approach is unique in comparison with other advanced resources on high-resolution electron microscopy. With the present textbook, readers are led to understand the essence of the imaging theories of TEM and STEM without being diverted by various kinds of knowledge around electron microscopy. The up-to-date information in this book, particularly on imaging details of STEM and aberration corrections, is valuable worldwide for today¿s graduate students and professionals just starting their careers.
This book highlights the photogalvanic effects at low dimensions, surfaces, and interfaces, more specifically 2D materials, such as graphene and monolayer transition metal dichalcogenides. Although the phenomenology of the photogalvanic effects, which can be simply seen as photoresponse nonlinear-in-electric field, have been well-established, the microscopic understanding in each material system may vary. This book is a quick reference and a detailed roadmap starting from phenomenology and continuing with the ultimate low dimensional materials, in which the photogalvanic effects can offer a rich platform at the second-order response to an electric field. A general phenomenology of photogalvanic effect is provided in the first chapter, together with the photon drag effect which also generates a photocurrent like the photogalvanic effect, but with some distinct features, as well as somewhat puzzling similarities. Next two chapters explain these effects in graphene, starting with a necessary related background on graphene, then a particular focus on its specific phenomenology, microscopic theory, and experimental results. In a similar fashion, in chapters four and five, a necessary background for the photogalvanic effects in monolayer transition metal dichalcogenides, with symmetry analysis, microscopic theory, and experimental results is presented, along with the Berry curvature dependent photocurrent, which can also play an important role in 2D semiconductors. The second-order photogalvanic effects that have been covered so far in graphene and monolayer transition metal chalcogenides have already excited the 2D semiconductor optoelectronic research community by several means. It seems that the interests on the photogalvanic effects will continue to escalate in near future.
This book presents various design theories and methodologies for silicon-based high-sensitivity broadband receivers, including millimeter-wave radiometer chips and photoelectric receivers, which are core elements in imaging systems, data centers, and telecommunication infrastructures. As a key module in application systems, the high-sensitivity broadband receiver, not only attracts the attention of engineers and researchers in the radio-frequency and optoelectronic fields, but also garners significant interest from other disciplines, including optics, communications, and security. The book introduces various silicon-based critical design technologies aim to overcome the limitations inherent in silicon devices, distinctly enhancing sensitivity with a broad bandwidth. These innovative design methodologies, initially proposed and subsequently validated through meticulous measurements, represent a pioneering contribution. The book provides readers with detailed insights into design intricacies and considerations. Its audience includes undergraduate and graduate students with a specific interest in RF/optoelectronic receiver technology, along with researchers and engineers engaged in the study of imaging systems, data centers, or other communication applications.
This advanced textbook provides an exhaustive review of topics of immense importance to the fundamental understanding of physics of materials at high pressures. The book presents the current status of experimental and theoretical techniques used to understand the behaviour of materials under high compression. Various topics covered in this book are high pressure studies of materials, equation of state of materials, phase transitions under high pressures, behaviour of hydrogen and hydrides under pressure, and hydrogen bond in solids under high pressure. This book is highly useful reference for the scientists working in the field of condensed matter in general and its behaviour under static and dynamic compression, in particular.
This volume comprises the select peer reviewed proceedings of the International Conference on Recent Evolutions in Energy, Drives and e-Vehicles (REED-EV 2022). It aims to provide a comprehensive and broad-spectrum picture of the state-of-the-art research and development in the area of power and energy systems, grid integration, convertor topology, electrification for transport industries, battery storage and energy management systems, system protection, filters and harmonics, among others. This volume will provide a valuable resource for those in academia and industry.
This book leads students to learn electromagnetism and then moves to chapters about electric circuits. It aims to give an understanding of electromagnetism which gives a fast way to master the features of circuit elements such as resistors, capacitors, and coils that compose electric circuits. The author provides chapters on electromagnetism and electric circuits separately and gives a chapter explaining the correlation between them in detail.In the chapters for electric circuit, DC electric circuits, transient and steady response of AC electric circuits are treated. AC circuit theory is introduced for describing the phenomena in circuits. Theoretical treatments such as branch current method, closed current method, and node potential method are also introduced to show the validity of solution methods that have been used in the book. The book can serve as a compact textbook for lectures, as an introduction for hardware system and electric control systems, and mechanical systems. Chapters for electromagnetism or ones for electric circuits are suitable for a lecture over a semester.
This book provides a single-source reference for any reader requiring basic and advanced information on wide bandgap semiconductors and related design topics. Focusing on practicability, it explains the principles of GaN and SiC semiconductors, manufacturing, characterization, market and design for key applications.
This book presents a comprehensive overview of density functional theory (DFT), from its basics to its practical application and implementation. It also discusses the breakthroughs in the field and the complete integration of physical and chemical aspects. It examines both orbital and time-dependent functions along with their variations according to semiquantitative analysis. The book also discusses analytical and computational techniques and principles, considering the classical and quantum approaches. Also covered are important topics such as HOMO (highest occupied molecular orbital), LUMO (lowest unoccupied molecular orbital), MEP (minimum energy paths), KS-DFT (Kohn-Sham density functional theory), UHFD (Unrestricted Hartree-Fock-Dirac), and Gaussian methods.
Polymers are accidentally discovered while experimenting with formaldehyde and phenols and later they are turned out to be a resourceful material ever evolved in the area of polymer science. Looking at their diverse perspectives, plastics became one of the essential materials in human society. Polymeric structure is one of the strengths of plastic that has made the material strong and durable and attained the place of leading material all over. Repetitive monomeric bonds facilitate high strength and resistivity against many environmental factors and also to biological activity, thus enhancing material's life for use and storage. Plastics are used almost in every sector worldwide, where around 70% of the goods are made out of plastics underlining its demand for production. The chief attributes of plastic which made the material the strongest utilizer are light weight, durable, flexible, transparent, versatile nature of polymer providing exceptional abilities to stand out amongst the other materials. As the material is light weight, durable and non-reactive, it is mostly absorbed in food wrapping and packaging purpose. Providing many benefits, one over the other landed the material to gain the wide acceptance in the industries and markets. Being a globalized product, the material has an impact on every sector and at some places, its use is inevitable like in consumer packaging which nearly accounts for 42% of the global annual resin production. Transparency and impermeable nature of packaging films facilitates three key potentials comprising conformal packaging, protected environment and easy transport. In hot-food service applications, polystyrene is primarily adopted having the property of insulation. These resins are too handy to use, replacing many materials in packaging of goods and food amenities. Materials like wood, metals and some of the building materials are even got replaced by plastics contributing almost 19% of the global production. Apart from replacing metals and wood, plastics also replaced natural fibres such as cotton, wool and silk. Plastics are extensively used in medical applications as they offer the required qualities like resistance against microbes and single use items.
This Brief presents a historical overview of the Förster-type nonradiative energy transfer and a compilation of important progress in FRET research, starting from Förster until today, along with a summary of the current state-of-the-art. Here the objective is to provide the reader with a complete account of important milestones in FRET studies and FRET applications as well as a picture of the current status.
Polymers are extended chain giant organic molecules which consists of repeated interlinking of many monomer units in long chain there by given its name poly, meaning 'many' and mer, meaning 'part' in Greek. A polymer is similar to a necklace made from numerous tiny beads joining together known as monomers. The nonconducting properties of most of the polymers signify a substantial advantage for various practical applications of plastics. However, organic polymers with good electrical conductivity have been observed during last two decades. The polymeric materials have good processability, less specific weight, corrosion resistance and also the exciting prospects for plastics fabricated in to films, electronic devices and electrical wires. Because of these properties, in recent years they have grabbed the attention of both academic researchers and industrial domains ranging from solid state physics to chemistry and to electrochemistry. Conducting polymers are the class of polymers which can conduct electricity due to its T-electron system. Sometimes these conducting polymers are also called organic polymeric conductors or conjugated polymers or purely conductive polymers. The existence of alternate single and double bonds between the carbon atoms leading to formation of sigma (a) and pi (T) bonds is known as conjugation. Due to the formation of covalent bonds between the carbon atoms the a-electrons are fixed and immobile, while the remaining T-electrons are easily delocalized upon doping. Thus, an extended T system along the conducting polymer backbone confers the electronic conduction due to the movement of T-electrons along the chain. Ever since the invention of iodine doped conductive polyacetylene, a new field of conducting polymers, which is also called as "synthetic metals", with a number of different conducting polymers and their derivatives have been established.
This book highlights recent advances and evolution of various nanomaterials and their potential in diverse research fields. The book covers the synthesis and characterization of various nanomaterials, followed by discussion on desired applications such as clean and green renewable energy, coating, sensors, thermal applications, microelectronics, biomedical applications such as drug carriers, nutrition, biosensors and detection of cancer cells. The chapters in this book not only illustrate the capability of nanomaterials in such novel usages but also reveal their potential drawbacks and the possible ways to overcome the pitfalls. The book covers interdisciplinary research advancement of nanomaterials, beneficial for researchers and professionals working in both science and engineering.
This book presents fundamental theory of shock and detonation waves as well as selected studies in detonation research in Japan, contributed by selected experts in safety research on explosives, development of industrial explosives, and application of explosives. It also reports detonation research in Japan featuring industrial explosives that include ammonium nitrate-based explosives and liquid explosives.Intended as a monographic-style book, it consistently uses technical terms and symbols and creates organic links between various detonation phenomena in application of explosives, fundamental theory of detonation waves, measurement methods, and individual studies. Among other features, the book presents a historical perspective of shock wave and detonation research in Japan, pedagogical materials for young researchers in detonation physics, and an introduction to works in Japan, including equations of state, which are worthy of attention but about which very little is known internationally. Further, the concise pedagogical chapters also characterize this book as a primer of detonation of condensed explosives and help readers start their own research.
This book highlights some of the latest advances in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe and beyond. It features contributions presented at the 10th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2022), which was held in hybrid format on August 25-27, 2022 at Lviv House of Scientists, and was jointly organized by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key findings on material properties, behavior, synthesis and their applications.The book will be interesting for leading scientists, advanced undergraduate and graduate students in material and nanoscience. This book¿s companion volume also addresses topics such as nano-optics, nanoelectronics,energy storage, nanochemistryl and biomedical applications.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.