Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book highlights the uses for underutilized crops, presenting the state-of-the-art in terms of genome sequencing for over 30 crops, previously understudied and under-researched. In a changing climate and with significant pressure on the land, it is the ideal time to be discussing novel crops, with significant biotic and abiotic tolerances and/or rich nutrient profiles for consumers. Previously, the only species with sequenced genomes were high-profile internationally recognized crops, but in the current era genomes are being sequenced for dozens of crops, including those previously classified as underutilized, now being investigated. This book covers food crops, from fruits to tubers, and from grasses to legumes, as well as crops with non-food applications. Some of these crops have draft genomes, and others have polished genomes with extensive resequencing panels. Each chapter tells the story of an individual crop or crop group, written by experts, focusing on the genome data available, revealing more about crop domestication and genetic variation, and the current and future prospects given that this data is now becoming available. It also highlights how even small sequencing projects can provide draft genome sequences suitable for gene discovery, comparative genomics, and identification of molecular markers for understanding these crops further.
This handbook provides an overview of the nature, prevalence, and causes of sleep problems in children with autism spectrum disorder (ASD) and examines the process of using functional behavior assessment (FBA) to treat sleep disorders. It describes several evidence-based treatments and explores how these align with the outcomes of the FBA process, including case illustrations of the assessment and treatment process. The handbook discusses the application of FBA in family contexts, including:The effects on children and families of successful interventions with sleep.How to conduct FBA with clinically complex families.Including the child in the intervention.The evidence of efficacy of other treatment approaches. The handbook addresses sleep problems that are highly prevalent among children and young people with ASD, including sleep onset delay, frequent and prolonged night waking, and unwanted co-sleeping. It explores the profound secondary effects that sleep problems may have on children's daytime functioning as well as child and parent health and wellbeing. The handbook discusses the causes of sleep problems in individuals with ASD, which may be multifaceted and complex and include physiological, environmental, cognitive etiologies yet almost always have a behavioral or learned component. It examines how FBA can be used to characterize challenging behaviors and identify the antecedents (e.g., environmental context) and consequences that affect such behaviors. The volume details the process of using FBA to assess and treat sleep problems in children with ASD. Clinical Handbook of Behavioural Sleep Treatment in Autism is a must-have resource for clinicians, therapists, and other practitioners as well as researchers and graduate students in clinical child and school psychology, behavioral therapy, social work, public health, developmental psychology, pediatrics, family studies, and child and adolescent psychiatry.
This book describes the various techniques for nondestructive quality assessment of fruits and vegetables. It covers the methods, measurements, operation principles, procedures, data analysis, and applications for implementing these techniques.The book presents the details of nondestructive approaches focusing on the present-day trends and existing future opportunities in the fresh food supply chain. First, it overviews different nondestructive techniques in food quality detection. Then it presents nondestructive methods: monochrome computer vision, imaging techniques, biospeckle laser technique, Fourier Transform Infrared (FTIR) Spectroscopy, hyperspectral imaging, Raman spectroscopy, near infrared (NIR) spectroscopy, X-ray computed tomography, ultrasound, acoustic emission, chemometrics, electronic nose and tongue. Selected applications of each method are also introduced. As a result, readers gain a better understanding of how to use nondestructive methods and technologies to detect the quality of fresh fruits and vegetables.With a wide range of interesting topics, the book will benefit readers including postharvest & food scientists/technologists, industry personnel and researchers involved in fresh produce quality detection. The book can also serve as a readily accessible reference material for postgraduate students.
This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the abiotic stresses caused by heat, cold, drought, flooding, submergence, salinity, acidity, etc., important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in technical crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing in many of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to abiotic stresses.The ten chapters each dedicated to a technical crop and one chapter devoted to a crop group in this volume elucidate different types of abiotic stresses and their effects on and interaction with the crops; enumerate the available genetic diversity with regard to abiotic stress resistance among available cultivars; illuminate the potential gene pools for utilization in interspecific gene transfer; present brief on classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing abiotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate different genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality of yields, and also elaborate some case studies on genome editing focusing on specific genes for generating abiotic stress-resistant crops.
This edited book provides the readers with the concepts and in-depth knowledge of plant disease assessment and conventional and modern technologies that aid in precise and accurate phytomathometery. This book discusses the evolution of plant disease assessment procedures from the primary visual estimation-based assessment to modern approaches, their practical application for reliable disease quantification, yield loss estimation, and the efficacy of disease control strategies for sustainable crop protection. Significant information is provided on the major aspects of the topic, including remote sensing, imaging techniques, molecular phytopathometery, microarray, and immunotechnology. The book helps plant scientists, plant pathologists, practitioners, researchers, and students in disease quantification, developing predictive models for plant disease epidemics, assessing crop losses, and the magnitude of plant disease control methods.This book describes the classical plant disease assessment methods based on visual observations. It Provides information regarding the modern and emerging technologies in Phytopathometery, precision, and accuracy. This book also discusses the application of disease assessments in predictive models, disease warning systems, expert systems, and decision support systems in applied plant pathology.
This book discusses the microbiology of fermentation for the production of bioethanol from sugarcane. Coverage includes how selected yeasts improve ethanol yield and productivity concerning recent advances at genomic, transcriptomic, and proteomic levels, how microorganisms (bacteria and yeasts) interact with each other in fermentation vats, and the application of microbiological monitoring methods with safety and precision. Special attention is given to antimicrobial strategies used to decrease contamination. The book is aimed at professionals working in the bioethanol industry, as well as students and researchers studying biological and biotechnological aspects of applied matters such as industrial microbiology and industrial fermentations.The English translation of this book from its Portuguese original manuscript was done with the help of artificial intelligence (machine translation by the service provider DeepL.com). A subsequent human revision of the content was done by the author.Covers common microbiological monitoring techniques;Reviews selected yeasts used in the bioethanol industry;Examines the role of bacteria and native yeasts in ethanolic fermentation and methods to control their growth.
This contributed volume explores the ways in which researchers engineer new biomaterials for the challenging problems of the peripheral and central nervous systems. These biomaterials are uniquely positioned for use in creating in vitro models of injury and disease, testing therapeutic treatments, understanding neural development, and mapping the multi-scalar environment of the brain. This book informs readers from biology, chemistry, materials science, engineering, and neuroscience on cutting edge research in engineering technologies, from fundamental material development through pre-clinical studies. The book also highlights target applications in three areas of research: (1) engineering neural models and materials, (2) probing biological underpinnings of neurological function and disease, and (3) designing therapeutic and diagnostic treatments for neurological disease.
This book covers the latest developments in tissue electrical conductivity and current density imaging, increasingly popular as well as challenging applications of MRI. These applications are enabled by the acquisition of high-quality MR phase images. This book provides a practical description of the MRI physics needed to understand and acquire phase images in MRI and the key details required to reconstruct them into conductivity, current density or electric field distributions. Comprehensive details are provided about the electrical properties of biological tissues, computational modeling considerations, experimental methods, construction of non-biological and biological phantoms and MRI pulse sequences. An inclusive review of image reconstruction algorithms, and their potential applications is provided for applications directed at determining current density or electric fields, such as in transcranial DC or AC stimulation techniques; as well as electrical conductivity reconstructions that may be of use in quantitative MRI applications used to detect cancer or other pathologies. This is an excellent book for undergraduate and graduate students beginning to explore phase, current density, and conductivity imaging in MRI, and will also be of great use to researchers interested in the area of MR-based electrical property imaging.
This detailed book brings together a collection of methodologies, from the most basic to the more complex, that provides researchers with a platform they can use to embark on a cartilage research career. To aid in the search for novel therapies for cartilage regeneration, this volume addresses 3D cartilage models, challenges associated with RNA and protein extraction, imaging, gene transfer, as well as stable differentiation and variations in cell phenotype from different tissue origins. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Cartilage Tissue Engineering serves as an ideal guide for researchers working to advance the vital study of cartilage biology and repair.
This handbook addresses treatment planning for children with autism spectrum disorder (ASD) and other neurodevelopmental disabilities (NDDs) using a medical home perspective. It examines the medical home model, which has been promoted as the standard of care by the American Academy of Pediatrics since 2002, emphasizing collaboration between patients, families, and providers to optimize care. The handbook addresses treatment planning, including the coordination of the care provided by multiple specialists with a clear, shared vision for maximizing each child's potential.Key areas of coverage include:* Elements of treatment planning, history of the medical home model, documentation, and strategies to facilitate communication.* Goals of treatment from the perspectives of the family, person served, care providers, and fiscal and regulatory bodies.* Role of each specialist, highlighting the most common conditions experienced by children with ASD and other NDD with expectations for assessment and treatment.* Detailed recommendations for making referrals and assisting the child and family in preparing for appointments.The Handbook of Treatment Planning for Children with Autism Spectrum Disorder and Other Neurodevelopmental Disabilities is a must-have resource for researchers, professors, and graduate students as well as clinicians, therapists, and other professionals across such interrelated disciplines as clinical child, school, and developmental psychology, child and adolescent psychiatry, social work, rehabilitation medicine/therapy, pediatrics, and special education.
This book combines discursive chapters that present the latest progress in molecular biology, drug discovery, organ-tissue engineering, and related fields, with a number of descriptive chapters on methods, protocols, and case studies. Structured into four parts, this volume walks the reader through the latest in cellular biology, with discussions on novel medicinal plant metabolites, nanotechnology in precision medicine, nucleic acid-based therapeutics and vaccines, genetic engineering, computational aid, bioinformatics, synthetic organs for transplantation, and organ-tissue engineering. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and expert implementation advice that ensures quality results in the lab. Authoritative and informative, Gene, Drug, and Tissue Engineering serves as an ideal guide for undergraduate students, postgraduate researchers, and senior researchers working in biomedicine and its underlying technologies, stimulating both computational and experimental development and fostering the exchange of new ideas.
Artificial Intelligence and Machine Learning for Women's Health Issues discusses the applications, challenges, and solutions that machine learning can bring to women's health challenges. The book illustrates advanced, innovative techniques, frameworks, concepts, and methodologies of machine learning which enhance the future healthcare system. This book's primary focus is on women's health issues and machine learning's role in providing solutions to these challenges, providing novel ideas for feasible implementation. It also provides an early-stage analysis for early diagnosis of women's health issues.
Stimuli-Responsive Hydrogels for Ophthalmic Drug Delivery covers fundamental aspects in the preparation of polymeric in-situ, stimuli-responsive hydrogels, including properties, characterization, chemistry, and fabrication of these hydrogels. The book will help the reader select the most appropriate material and design for the desired application. The book goes on to review applications in ophthalmic drug delivery, covering in vitro and in vivo models, animal models, preclinical testing, patents, and more. This is a must-have reference for researchers and academics in the fields of materials science, biomaterials, pharmacology and polymer science, with an interest in clinical aspects of hydrogel design and application.
This book reviews the development of cell-free production platforms and offers an authoritative perspective of the latest advances and methodologies in cell-free production systems. Readers will discover the biomanufacturing potential of in vitro biotransformation (ivBT) employing purified cascade multi-enzymes, the development of hydrogel-based multi-enzymatic systems for biosynthesis, and novel insights into the optimization of biocatalytic processes. Additionally, the book explores the cell-free production and regeneration of cofactors, shedding light on strategies to enhance the efficiency and sustainability of cellular processes.In this book, particular attention is given to the progress of cell-free in vitro evolution techniques for optimizing enzyme performance, and the book also presents the integration of rapid and finely-tuned expression systems for deployable sensing applications, revolutionizing the field of biosensing. The synthesis and electrophysiological analysis of multipass voltage-gated ion channels tethered in microsomal membranes are explored, providing a deep understanding of cellular function at the molecular level. Lastly, the book covers compartmentalized cell-free expression systems for building synthetic cells, showcasing the potential for constructing artificial cellular systems with unique functionalities.Given its breadth, this book appeals to academics, researchers, and professionals interested in the forefront of biotechnology, and together with the companion volume ¿Cell-free Macromolecular Synthesis¿, both books highlight the research progresses on the basic and applied research of cell-free production systems in the last few years, being invaluable resources in the field.Chapter ¿Cell-free synthesis and electrophysiological analysis of multipass voltage-gated ion channels tethered in microsomal membranes¿ is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
The field of nanotechnology for targeted therapy initiated more than decade ago has grown fast and interest is increasing. Given the importance of the field for targeted drug and gene delivery systems, there are a large number of laboratory investigations today researching nanobiomaterials for diagnostic and therapeutic applications. Because of the ability of scientists to load nanoparticles with any agent, interest continues to grow and technology in this arena is rapidly evolving. These emerging nanobiomaterials-based medicines can overcome the disadvantages of traditional medicines by target-oriented and site-specific delivery of precise medicines (immunotherapeutic agents, chemotherapeutic agents, diagnostic agents, and so on).Pharmaceutical Nanobiotechnology for Targeted Therapy presents an updated overview of recent advancements in the field of pharmaceutical nanobiotechnology and nano-based drug and gene delivery systems. This comprehensive knowledge will allow researchers to discover innovative nanobiomaterials for targeted therapeutics. The chapters deal with various emerging nanobiomaterials for targeted therapeutic delivery systems and the writing is in a style that is easily disseminated and in a manner that can be readily adopted as sources for new and further studies.This book should be useful for researchers and professionals from academia and industry working in the field of nanotechnology, nanobiotechnology, as well as in the field of pharmaceutical nanotechnology. It should also be useful to those interested in a range of disciplines from material science, chemistry, molecular biology, polymer chemistry, and many more interdisciplinary areas.
Biotic stresses cause yield loss of 31-42% in crops in addition to 6-20% during post-harvest stage. Understanding interaction of crop plants to the biotic stresses caused by insects, bacteria, fungi, viruses, and oomycetes, etc. is important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding and the recently emerging genome editing for developing resistant varieties in technical crops is imperative for addressing FHEE (food, health, energy and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing have facilitated precise information about the genes conferring resistance useful for gene discovery, allele mining and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses.The 15 chapters dedicated to 13 technical crops and 2 technical crop groups in this volume will deliberate on different types of biotic stress agents and their effects on and interaction with crop plants; will enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; will brief on the classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; will enunciate the success stories of genetic engineering for developing biotic stress resistant varieties; will discuss on molecular mapping of genes and QTLs underlying biotic stress resistance and their marker-assisted introgression into elite varieties; will enunciate on different emerging genomics-aided techniques including genomic selection, allele mining, gene discovery and gene pyramiding for developing resistant crop varieties with higher quantity and quality; and will also elaborate some case studies on genome editing focusing on specific genes for generating disease and insect resistant crops.
This book presents nanomaterials for cancer detection using a variety of state-of-the-art imaging techniques. Clinical applications are also highlighted. The unique size-dependent properties and convenient surfaces for molecular assembly make these nanomaterials essential for a variety of innovative imaging techniques. This book covers important imaging modalities, synthesis of nanoparticles with specific functional properties, and clinical applications including the development of anticancer drugs. The information presented here involves contributions from chemistry, materials science, materials characterization, cell engineering, and clinical testing.The book will be essential reading to experienced clinicians as well as a wide range of scholars and researchers interested in nanotechnology and imaging techniques for cancer detection.
Soybean (Glycine max L. (Merr)) is one of the most important crops worldwide. Soybean seeds are vital for both protein meal and vegetable oil. Soybean was domesticated in China, and since last 4-5 decades it has become one of the most widely grown crops around the globe. The crop is grown on an anticipated 6% of the world's arable land, and since the 1970s, the area in soybean production has the highest percentage increase compared to any other major crop. It is a major crop in the United States, Brazil, China and Argentina and important in many other countries. The cultivated soybean has one wild annual relative, G. soja, and 23 wild perennial relatives. Soybean has spread to many Asian countries two to three thousand years ago, but was not known in the West until the 18th century. Among the various constraints responsible for decrease in soybean yields are the biotic and abiotic stresses which have recently increased as a result of changing climatic scenarios at global level. A lot of work has been done for cultivar development and germplasm enhancement through conventional plant breeding. This has resulted in development of numerous high yielding and climate resilient soybean varieties. Despite of this development, plant breeding is long-term by nature, resource dependent and climate dependent. Due to the advancement in genomics and phenomics, significant insights have been gained in the identification of genes for yield improvement, tolerance to biotic and abiotic stress and increased quality parameters in soybean. Molecular breeding has become routine and with the advent of next generation sequencing technologies resulting in SNP based molecular markers, soybean improvement has taken a new dimension and resulted in mapping of genes for various traits that include disease resistance, insect resistance, high oil content and improved yield.This book includes chapters from renowned potential soybean scientists to discuss the latest updates on soybean molecular and genetic perspectives to elucidate the complex mechanisms to develop biotic and abiotic stress resilience in soybean. Recent studies on the improvement of oil quality and yield in soybean have also been incorporated.
This book covers the present and future of bioethanol biorefinery technologies. It discusses the efficient use of feedstock in bioethanol production, and critically reviews the environmental sustainability of bioethanol production. In addition, it describes the integrated production of bioelectricity, biopolymers, organic acids, and other biomolecules, as well as the use of process-related liquid and solid byproducts and/or wastes during bioethanol generation.Since the bioethanol industry has also led the automotive industry to explore new avenues, this book summarizes the various aspects of ethanol motorization, hybrid engine development, and biofuel electrification. For decades, clean and renewable alternatives have been sought to reduce dependence on petroleum-based fossil fuels and CO2 emissions. Bioethanol appears as one of the best solutions for the production of biofuels, bioenergy and biochemicals, along with the establishment of new biorefinery concepts and a circular bioeconomy. Therefore, the ideas and technologies presented in this book contribute to the UN Sustainable Development Goal 7: Affordable and Clean Energy.This book is a useful reference for postgraduate students and researchers interested in biorefinery and biofuel technologies, both in academia- and commercial laboratories. Early career scientists can use it to fast track into the field. Advanced scientists will find it helpful to gain a broader overview of the field beyond their area of specialization.
This book covers broader application of biotechnology for the protection of environment through different bioremediation and biodegradation techniques developed for removal of environmental contaminants including the recently discovered contaminants. The book offers a comprehensive overview of environmental pollutants including their fate, behavior, environmental and associated health risks. It is useful reading material for postgraduate and graduate students of environmental biotechnology, environmental microbiology and ecology. Young researchers also find the chapters useful understanding the latest developments.
The present book entitled, "e;Re-visiting the Rhizosphere Eco-system for Agricultural Sustainability"e; written by experts in the field, provides a comprehensive and consolidated state-of art overview of various aspects of rhizosphere biology, ecology and functioning. The role of rhizosphere microbial diversity in enhancing plant health and plant-microbe beneficial symbioses is discussed. Main topics include the diversity of plant-associated microbes in the rhizosphere, below-ground communication among the plant, soil, insects and microbes, rhizosphere ecosystem functioning, rhizosphere engineering, recruitment of microorganisms in the rhizosphere, mycorrhizal fungal symbiosis, positive interaction of the plants with the beneficial soil microorganisms for inducing the plant growth, conferring abiotic and biotic stress tolerance and modulating several pathways of the plants for the proper establishment and revitalization in the degraded and contaminated soils or negative likes the host-pathogen interactions leading to the disease development in plants. Further chapters focus on the role of signaling during the different stages of the plant-microbe coexistence, in symbiotic or pathogenic relationships, in quorum sensing, microbial signaling and cross-talk, bio-film formation, and antimicrobial peptides. The book also discusses the application of microbes in biodegradation of xenobiotic contaminants, bioremediation of heavy metals, sustainable agriculture and soil health, biological control of insect pests and plant pathogens, and the latest tools of omics which offer pioneering approaches to the exploration of microbial structure and function, secretome, holobiome, below-ground interaction, and microbial cooperation for sustainable food production and enhanced resource acquisition. Descriptions of cutting-edge techniques and novel approaches make this book unique in the area of rhizosphere biology. This is a useful reading material for researchers and students of microbiology, agriculture, ecology, and rhizosphser studies.
This handbook provides a substantive foundation of autism theory and research, including a comprehensive overview, conceptualization, and history of autism spectrum disorder (ASD) and pervasive developmental disorder (PDD). This robust reference work integrates the broad scholarly base of literature coupled with a trenchant analysis of the state of the field in nosology, etiology, assessment, and treatment. Its expert contributors examine findings and controversies (e.g., the actual prevalence of autism) as well as longstanding topics of interest as well as emerging issues from around the globe. In addition, the handbook describes multiple assessments, diagnoses, interventions and treatments for autism and PDD. It addresses such key topics as assessment of core symptoms and comorbidities, risk factors, epidemiology, diagnostic systems, neuroscience as well as issues regarding family adaptation. In addition, the handbook explores the rapidly evolving and expanding topics of medications, diets, fringe and harmful treatments, applied behavior analysis, and early intensive behavioral interventions.Key areas of coverage include:Survey of diagnostic criteria and assessment strategies for autism and pervasive developmental disorder.Genetic, behavioral, biopsychosocial, and cognitive models of autism assessment and treatment.Psychiatric disorders in individuals with ASD.Theory of mind and facial recognition in persons with autism.Diagnostic instruments for assessing core features and challenging behaviors in autism and PDD.Evidence-based psychosocial, pharmacological, and integrative treatments for autism and other developmental disabilities.Interventions specifically for adults with ASD.Training issues for professionals, parents, and other caregivers of individuals with autism and developmental disabilities.Review of findings of successful and promising therapies coupled with guidance on how to distinguish between dubious and effective treatments for autism and PDD.The handbook is an indispensable resource for researchers, professors, graduate students as well as clinicians, therapists, and other practitioners in clinical child and school psychology, child and adolescent psychiatry, social work, special education, behavioral rehabilitation, pediatric medicine, developmental psychology, and all allied disciplines.
Biomechanics for Today's World provides students with a foundational, essential introduction to biomechanics, the study of human and animal movement. The text offers a wide variety of examples and applications of biomechanical knowledge to showcase the benefit of understanding the complexity of biological movement. The interactive ebook format allows students to read the text of each chapter and engage with digital learning activities-including YouTube videos, interactive videos with embedded knowledge checks, assignments, and quizzes-all within a single system. Opening chapters provide students with a brief overview of the history of the biomechanics field, introductory information about the discipline, and insight into the various areas of biomechanical research, including sports, daily life, and medicine. Additional chapters cover tools of the trade, including essential equipment and the application of vector mathematics, as well as linear kinematics, linear kinetics, angular kinematics, and angular kinetics. Closing chapters explore fluid dynamics and the future of biomechanics. Providing students with a uniquely interactive and applied introduction to the field, Biomechanics for Today's World is ideal for courses and programs in kinesiology, biomechanics, sports therapy, and related areas.
The book focuses on biomedical innovations related to the diagnosis and treatment of sleep apnea. The latest diagnostic tools are described, including sleep laboratory equipment, wearables, and even smartphone apps. Innovative medical devices for treatment are also covered, such as CPAP, Auto-PAP, hypoglossal nerve stimulation, phrenic nerve stimulation, acoustic brain stimulation and electrical brain stimulation. This is an ideal book for biomedical engineers, pneumologists, neurologists, cardiologists, physiologists, ENT physicians, pediatrics, and epidemiologists who are interested in learning about the latest technologies in treating and diagnosing sleep apnea.
With the erratic changes in climate, crop plants are facing many forms of biotic stresses. When plants are under stress, among several gene families, regulatory genes play a vital role in signal transduction in modulating the expression of genes underpinning several defense pathways and targeting regulatory proteins (viz, transcription factors (TFs)) can be the alternative. Transcription factors directly regulate the downstream R genes and are excellent candidates for disease resistance breeding. Till date, numerous transcription factors have been identified and characterized structurally and functionally. Of them, TF families such as WRKY, NAC, Whirly, Apetala2 (AP2), ethylene responsive elements (ERF) etc. are found to be associated with transcriptional reprogramming of plant defense response. These TFs are responsive to the pathogen's PAMPs/DAMPs - host's PRR protein interactions and specifically binds to the cis-elements of defense genes and regulate their expression. With this background, realizing the importance of TFs in resistance breeding, this book discusses the recent research and developments in this field for various crops.
This edited book discusses how effective soil carbon management plans and policies will ultimately make agriculture more secure against climate change and soil degradation. It is focused on initiatives to enhance soil organic carbon (SOC) and sequestration by launching different schemes and programs. An approach based on practical aspects of managing SOC in agriculture is provided with clear and concise descriptions. It has more attention to successfully implement plans and policies to meet the required level of SOC restoration. The book is covering the urgent needs of plans and policies for soil management and C restoration in agricultural ecosystems which can be beneficial to food, nutrition, environment, and economy security. There is also providing a roadmap on SOC policies to encourage the use of best management practices (BMPs) for soil health and C stock restoration, and achieve the Sustainable Development Goals of the United Nations. The book is suitable for teachers, researchers, government planners and policymakers, undergraduate and graduate students of soil science, soil microbiology, agronomy, ecology, and environmental sciences.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.