Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
A circular and environment-friendly economy could displace the linear economy as it is in use around the world. This would involve enlarged life cycles for products, and an increase in the efficiency of electric and electronic devices. The generation of new materials will be essential, as well as materials recycling or conversion after use. This book discusses new ways of production, management, recycling and conversion of new and regular materials.Keywords: Microplastics, Lignocellulose-Based Materials, Food Packaging, Biorefinery, Solar Energy, Reused Materials, Recycling of Plastics, Biopolymers, Composites, Polymeric Systems, CO2 Capture, Anticorrosive Polymeric Coatings, Metallic Structures, Scrap for New Steel, Nanomaterials, Waste from Electronic Components, Future of Cars, Raw Materials, Biomaterials, Bioeconomy, Circular Bioeconomy, Polymeric Electrolytes, Fuel Cells.
This book describes improvements to the electronics topology of current modular reconfigurable storages by integrating parallel connectivity, reducing the semiconductor count by eliminating irrelevant states, and improving the monitoring techniques through higher function integration. The author also discusses each topology's main advantages and disadvantages at the micro and macro levels. Moreover, the presented modeling of modular reconfigurable storage systems with different storages helps in better understanding the dynamics of the system.The book establishes novel optimum or near-optimum methods for exploiting the DOF (degrees of freedom) to achieve higher efficiency, more function integration, better balancing, or output quality. Additionally, through a detailed analysis of different modulation techniques, this book presents novel modulation methods, enhances the state-of-the-art, or in some cases, simplifies the complexity of implementation.The concept of interconnected multi-port systems through integrating novel modulation techniques and the acquired understanding of the behavior of modular dynamically reconfigurable storages is explained. The presented concepts can significantly reduce the number of energy conversion stages as well as the final footprint of the system, reduce the number of required controlled semiconductors, and save costs. It also presents novel monitoring techniques based on estimators that can significantly reduce the number of required sensors and the required data-communication bandwidth.
This volume focuses on recent developments in metallacrown chemistry. While the field was established in 1989 by Professor Vincent Pecoraro and numerous applications had been proposed, there has been a recent surge in the practical applications for this class of molecules. Written by leaders in the metallacrown chemistry field this book addresses recent developments. The single-molecule magnet properties of metallacrowns are presented along with discussions on their ability to bind DNA, as well as their potency to serve as building blocks for supramolecular structures. The volume is not only intended for those who work directly in the field of metallacrowns but it also appeals to those working in the aligned fields of metallamacrocyclic chemistry, self-assembly chemistry, and supramolecular chemistry. This dedicated volume serves as an encyclopedic reference for those wishing to gain insight into the field.
This book covers edge-point applications in science and engineering. The chapters discuss the functional properties of advanced engineering materials and biomolecules, improving the comprehension of their chemical physical properties and potential for new technological and medicinal applications. The book presents a small number of experimental techniques and computational simulation models from basic concepts of classical/quantum mechanics, physics, chemistry, biology, statistical methods that can predict important applications and properties of these materials/biomolecules. The content shows how improving design of new systems helps in addressing future world problems (health, energy, food, environment, transportation, housing, clothing, etc.), i.e., almost every aspects of our daily lives.
This book aims at providing a computational framework of radiative heat transfer in participating media. The book mainly helps engineers and researchers develop their own codes for radiative transfer analysis, starting from simple benchmark problems and extending further to industry scale problems. The computations related to radiative heat transfer are very relevant in iron and steel manufacturing industries, rocket exhaust designing, fire resistance testing, and atmospheric and solar applications. The methods to accurately treat the non-gray nature of the participating gases such as H2O, CO2, and CO are discussed along with considering particle radiation. The solver development based on these methods and its application to a variety of industry problems and different kind of geometries is a significant attraction in the book. The last section of the book deals with the use of artificial neural networks and genetic algorithm-based optimization technique for solving practical problems of process parameter optimization in industry. This book is a comprehensive package taking the readers from the basics of radiative heat transfer in participating media to equip them with their own solvers and help to apply to industry problems.
This book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion.The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of superconductor, specimen size and electric field strength. Recent developments of critical current properties in various high-Tc superconductors and MgB2 are introduced.The 3rd edition has been thoroughly updated, with a new chapter on critical state model. The mechanism of irreversible properties is discussed in detail. The author provides calculations of pinning loss by the equation of motion of flux lines in the pinning potential and hysteresis loss. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. This book aims for graduate students and researchers studying superconductivity as well as engineers working in electric utility industry.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.