Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Challenges in Mechanics of Time-Dependent Materials & Mechanics of Biological Systems and Materials, Volume 2 of the Proceedings of the 2022 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the second volume of six from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental Mechanics, including papers in the following general technical research areas: Characterization Across Length ScalesExtreme Conditions & Environmental EffectsDamage, Fatigue and FractureStructure, Function and PerformanceRate Effects in ElastomersViscoelasticity & ViscoplasticityResearch in ProgressCellular Biomechanics and MechanobiologyBiofilms and Microbe MechanicsTraumatic Brain InjuryCardiac and Vascular BiomechanicsOrthopedic and Disease BiomechanicsTime Dependence of BiomaterialsExperimental Techniques in Biological and Biomimetic Systems
Mechanics of Composite, Hybrid, and Multifunctional Materials, Volume 5 of the Proceedings of the 2022 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the fifth volume of six from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including:Recycled Constituent CompositesDamage DetectionAdvanced Imaging of CompositesMultifunctional MaterialsComposite InterfacesTunable Composites
This volume highlights the potentials as well as the limits and challenges of human breath analysis and describes the current efforts made to advance this promising technology from bench to bed. Human breath analysis is a young, interdisciplinary and innovative research field aiming to provide a smart and non-invasive diagnostic tool, which can be used for screening, detecting and monitoring of diseases or metabolic disorders. This book presents different approaches for breath analysis including real-time and offline mass spectrometry as well as optical and semiconductor gas sensing methods. Besides, the role of smart algorithms to improve the performance of those technologies and the importance of pulmonary function diagnostics for more reliable and meaningful breath analysis are highlighted. Finally, current application scenarios and future perspectives of breath analysis and pulmonary functioning tests are addressed.The volume is useful for researchers, who are new in the field, to easily get an overview of the current status and the challenges present in human breath analysis. Topics from fundamental research over targeted sensor development and application scenarios are described. Thus, this volume covers all development stages providing support and inspiration for engineers, medical doctors and scientists from various fields.
This thesis investigates the detection efficiency of field-resolved measurements of ultrashort mid-infrared waves via electro-optic sampling for the first time. Employing high-power gate pulses and phase-matched upconversion in thick nonlinear crystals, unprecedented efficiencies are achieved for octave-spanning fields in this wavelength range. In combination with state-of-the art, high-power, ultrashort mid-infrared sources, this allows to demonstrate a new regime of linear detection dynamic range for field strengths from mV/cm to MV/cm-levels. These results crucially contribute to the development of field-resolved spectrometers for early disease detection, as fundamental vibrational modes of (bio-)molecules lie in the investigated spectral range.The results are discussed and compared with previous sensitivity records for electric-field measurements and reference is made to related implementations of the described characterization technique. Including a detailed theoretical description and simulation results, the work elucidates crucial scaling laws, characteristics and limitations. The thesis will thus serve as an educational introduction to the topic of field-resolved measurements using electro-optic sampling, giving detailed instructions on simulations and experimental implementations. At the same time, it showcases the state-of-the-art in terms of detection sensitivity for characterizing mid-infrared waves.
This book consists of selected peer-reviewed articles from the International Conference on Computer Vision, High Performance Computing, Smart Devices and Networks (CHSN-2020), held at JNTU, Kakinada, India. The theme and areas of the conference include vast scope for latest concepts and trends in communication engineering, information theory and networks, signal, image and speech processing, wireless and mobile communication, Internet of Things, and cybersecurity for societal causes and humanitarian applications.
This book presents nanomaterials for cancer detection using a variety of state-of-the-art imaging techniques. Clinical applications are also highlighted. The unique size-dependent properties and convenient surfaces for molecular assembly make these nanomaterials essential for a variety of innovative imaging techniques. This book covers important imaging modalities, synthesis of nanoparticles with specific functional properties, and clinical applications including the development of anticancer drugs. The information presented here involves contributions from chemistry, materials science, materials characterization, cell engineering, and clinical testing.The book will be essential reading to experienced clinicians as well as a wide range of scholars and researchers interested in nanotechnology and imaging techniques for cancer detection.
This volume provides a wide spectrum of multidisciplinary approaches for studying RNA structure and dynamics, including detailed accounts of experimental and computational procedures. Chapters guide readers through cryo-electron microscopy, crystallography, isothermal titration calorimetry, small angle X-ray scattering, single-molecule Forster Energy transfer, X-ray free electron laser, atomic force microscopy, computational simulation, and prediction. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols.Authoritative and cutting-edge, RNA Structure and Dynamics aims to be a foundation for future studies and to be a source of inspiration for new investigations in the field.
This book compares premetered methods to self-metered processes and addresses general properties of premetered methods. It presents specific properties of slot, slide, and curtain coating. The book is divided in three parts:Part I compares premetered methods to self-metered processes. It explains the term "e;premetered,"e; which is an expression of the law of mass conservation, and discusses the physical fluid properties that are relevant for premetered processes. Furthermore, it presents in detail the various basic flow fields that make up premetered coating methods. Lastly, it introduces the concepts of wall shear stress, residence time, and hydrodynamic assist to dynamic wetting. Part II addresses general properties of premetered methods, such as the fluid conditioning and delivery systems, the nominal film thickness, and the film thickness uniformity, both in machine and cross-web directions (die design). It lists the attractive features of simultaneous multilayer applications, including an explanation of how mixing of adjacent layers can be prevented. This section concludes by revisiting examples of economic considerations.Part III presents specific properties of slot, slide, and curtain coating. It examines various topics, such as coating equipment and coating configurations, coating modes, details of the various flow fields, operating window and process limitations, and process optimization.
This book reviews work that covers everything from basic chemistry to advanced applications. Chitin and chitosan are used in a plethora of applications from wastewater treatment to prosthetics. After introducing the subject of polysaccharides as a whole, the authors turn to the preparation of chitin and chitosan and the characterization of the latter. The book provides information on chitin chemistry, extraction of chitin, chitosan preparation processes, and the applications of their derivatives in various fields. Among the applications that are included in detail are the adsorption of heavy metals for pollution prevention and clean-up, biosensors, cosmetics, various medical applications from anti-tumor activity to bone tissue engineering, agriculture and food production, and proton exchange membranes for fuel cells.Chitin and Chitosan features:* information on molecular structure, synthesis, properties, and latest research related to chitin and chitosan;* coverage of a wide range of topics from the properties of chitosan to its derivatives and applications;* in-depth information on biomedical applications of chitin and chitosan; and* information that can be applied to other biopolymer processing engineering areas.This book will be of interest to practitioners working in a wide variety of industries for which chitin and chitosan are useful materials, researchers in biosensors and heavy-metal adsorption, and to academic researchers investigating the properties, preparation, and uses of these materials.
This book provides information on the characteristics, strategies and applications of layered materials. It sheds light on layerdness-dependent properties of Van der Waals solids for potential applications. The properties of various layered materials prepared using different experimental strategies are described. Further, the first-principles calculations are given to devise a strategy to investigate layeredness in materials. The structural, thermal, mechanical, lattice vibronic, electronic, optical and carrier transport characteristics of the layered materials are elaborated in detail. This book provides an updated source of information on layered materials for students, researchers, and professionals.
This book provides an insight into the basic fundamentals of the biomaterials used for the biomedical applications, their development and processing techniques. Advanced materials are significantly utilized for the biomedical applications ranging from dental devices to cancer treatment owing to their higher biocompatibility and better interaction with tissues. This book covers the various topics that include basic biocompatibility phenomena, insight to materials science, class of different advanced materials as a biomaterials, development and processing techniques, design and analysis of the developed advanced materials, investigation of its properties and major applications. Recent information regarding the development techniques and methods for improving the properties of the advanced materials in the field of biomedical applications is highlighted in detail. The textbook offers clear explanation of the text in the chapters with self-explanatory figures and tables. It demonstrates the novel methods, opportunities and ideas for developing biomaterials in the field of biomedical applications. It also includes critical review study of the developed advanced materials for biomedical applications in a new summarized form. The inclusion of the discussions on hybrid polymer-based composites and self-healing composite materials offers a special feature in the textbook. It features a thorough overview of the simulation aspect in the biomedical applications. The book features at least 50% of its references from last three¿four years¿ work in the field of biomaterials and biomedical. The book content adds to the redundancy in the literature work related to biomedical and biomaterials.This book is a valuable resource for academicians, students and scholars from science and engineering background having interest in biomaterials. It is helpful to the biomedical engineering group especially in countries or location where they don¿t have access to the major journals.
The primary aim of the proposed book is to provides understanding of the sophisticated modern characterisation techniques in domain of civil engineering. It systematically covers physical, chemical, mineralogical and microstructural characterisation imperative to evaluate the construction materials and their performance.
This book presents the potential of the Monte Carlo (MC) technique to solve mathematical and physical problems of great complexity. This book focusses on the study of the electron-solid interaction (transport MC) and presents some physical problems related to the transport of hot electrons in solid targets using transport MC. The numerical and theoretical results are validated through a comparison with experimental results. The author also addresses methodological aspects. In particular, systematic comparisons among different calculation schemes are presented. Different expressions for the calculation of cross sections and/or stopping power and different simulation methods are described and discussed.
. The main aim of this book is to shine a spotlight on key experiments and their crucial importance for advancing our understanding of physics. Physics is an empirical science, and experiments have always been a driving force in the development of our understanding of nature. Facts matter. In that sense, the book attempts to be complementary to the many popularizations of theoretical physics, and to counterbalance the frequent emphasis there on more speculative ideas.Experimental physics is also an essential pillar in physics teaching, as well as helping broader audiences to better understand important concepts, particularly in challenging fields such as relativity or quantum physics, where our common sense intuition often fails.Readers are taken on an historical journey, starting with ¿Free Fall¿ and culminating in ¿Spooky Action at a Distance¿. En route they will encounter many important branches of physics, whose main ideas and theoretical description will be given a more empirical meaning. At the end, the reader is invited to reflect on what could be exciting and important directions for fundamental physics. All readers with an undergraduate degree in physical sciences or engineering will enjoy and learn much from this stimulating and original text.
This book reports a study of a class of Dion-Jacobson-type layered perovskite oxides in which high oxide-ion conductivities in phases were discovered for the first time in the world. The oxide-ion conductors are important in various energy conversion devices and environmental protection applications such as solid-oxide fuel cells, oxygen gas sensors, oxygen separation membranes, and oxygen-based catalysts. The discoveries are based on a new screening method, called the bond valence method, combined with an original design concept. The present finding of high oxide-ion conductivity reported in the thesis suggested the potential of Dion-Jacobson phases as a platform to identify superior oxide-ion conductors.To understand what causes such high oxide-ion conductivities in these layered perovskite oxides, the author analyzed their crystal structures at high temperature and described the relationship between oxide-ion conductivities and their crystal structures. A deep understanding of the mechanisms of oxide-ion diffusivity at an atomic level in the Dion-Jacobson phases is clarified.The discovery of these materials, the new screening method, and the original design concept make possible the realization of many environment-friendly technologies. The findings in this thesis facilitate the possibilities for many novel applications that will help lead to a sustainable future.
This book provides the reader with an updated comprehensive view of the rapidly developing and fascinating field of fluorescence spectroscopy and microscopy. In recent years, fluorescence spectroscopy and microscopy have experienced rapid technological development, which has enabled the detection and monitoring of single molecules with high spatial and temporal resolution. Thanks to these developments, fluorescence has become an even more popular method in physical, biological and related fields. This book guides the reader through both basic and advanced fluorescence spectroscopy and microscopy approaches with a focus on their applications in membrane and protein biophysics. Each of the four parts: A - Fluorescence Spectroscopy, B - Fluorescence Microscopy, C - Applications of Fluorescence Spectroscopy and Microscopy to biological membranes and D - Applications of Fluorescence Spectroscopy to protein studies are written by experts within the field. The book is intended for both complete beginners who want to quickly orient themselves in the large number of existing fluorescent methods, as well as for advanced readers who are interested in particular methods and their proper use.
This second edition details new and updated chapters on key methodologies and breakthroughs in the mass spectrometry imaging (MSI) field. Chapters guide readers through nano-Desorption Electrospray Ionisation (nDESI), Matrix Assisted Laser Desorption Ionisation-2 (MALDI-2), Laser Ablation - Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) ,Imaging Mass Cytometry (IMC) with a variety of diverse samples including eye tissue, crop analysis, 3D cell culture models, and counterfeit goods analysis. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Imaging Mass Spectrometry: Methods and Protocols, Second Edition aims to be a useful and practical guide to new researchers and experts looking to expand their knowledge.
This book includes original, peer-reviewed research papers from the 12th China Academic Conference on Printing and Packaging (CACPP 2021), held in Beijing, China on November 12-14, 2021. The proceedings cover the recent findings in color science and technology, image processing technology, digital media technology, mechanical and electronic engineering and numerical control, materials and detection, digital process management technology in printing and packaging, and other technologies. As such, the book is of interest to university researchers, R&D engineers and graduate students in the field of graphic arts, packaging, color science, image science, material science, computer science, digital media, network technology, and smart manufacturing technology.
In this book, computational optical phase imaging techniques are presented along with Matlab codes that allow the reader to run their own simulations and gain a thorough understanding of the current state-of-the-art. The book focuses on modern applications of computational optical phase imaging in engineering measurements and biomedical imaging. Additionally, it discusses the future of computational optical phase imaging, especially in terms of system miniaturization and deep learning-based phase retrieval.
This thesis presents research on novel laboratory-scale synchrotron X-ray sources based on inverse Compton scattering and applications of their X-ray radiation using the Munich Compact Light Source (MuCLS) as an example. It provides an introduction to the theory of this laser-electron interaction, laser resonators and X-ray interactions with matter. On this basis, upgrades to the laser system including the development of a new laser optic, X-ray beam stabilisation and two techniques for fast X-ray energy switching of inverse Compton sources are presented. On the application side, the beamline, designed and developed for the inverse Compton X-ray source at the MuCLS, is described before various techniques and applications are demonstrated at this laboratory-scale synchrotron X-ray facility. Among them are K-edge subtraction imaging, X-ray phase contrast imaging and X-ray absorption spectroscopy. Additionally, a new X-ray microscopy technique, called full-field structured-illumination super-resolution X-ray transmission microscopy, is presented.Apart from research conducted at the MuCLS, this thesis contains an in-depth overview on the state of the art of the various types of inverse Compton X-ray sources that have been realised so far. Accordingly, this thesis may serve as a guide and reference work for researchers working with inverse Compton X-ray sources as well as future users of such devices.
The book provides research scientists and engineers in industry information and data on the materials processing, characterization, and determination of materials¿ physical-chemical properties. The book highlights optical and chemical properties obtained on novel materials using a range of deposition methods by two different spectroscopic techniques: SE and UV-VIS-NIR. Emphasizing applications from across a number of domains including Healthcare, Opto-Electronic, and Defense, the book is ideal for academic researchers, graduate/undergraduate students, and practicing engineers concerned with optical coating technologies.
Recently, surface-engineered and modified nanomaterials have been developed as corrosion inhibitors for different metals alloys in coating and solution phases. This book covers current emerging trends and applications in nanomaterials and nanotechnologies and their applications in corrosion prevention. It offers synthesis, surface modification for enhanced dispersibility and protection, composite formation and their anticorrosive applications.
This book starts with an introduction to quantitative texture analysis (QTA), which adopts conventions (active rotations, definition of Euler angles, Wigner D-functions) that conform to those of the present-day mathematics and physics literature. Basic concepts (e.g., orientation; orientation distribution function (ODF), orientation density function, and their relationship) are made precise through their mathematical definition. Parts II and III delve deeper into the mathematical foundations of QTA, where the important role played by group representations is emphasized. Part II includes one chapter on generalized QTA based on the orthogonal group, and Part III one on tensorial Fourier expansion of the ODF and tensorial texture coefficients. This work will appeal to students and practitioners who appreciate a precise presentation of QTA through a unifying mathematical language, and to researchers who are interested in applications of group representations to texture analysis. Previously published in the Journal of Elasticity, Volume 149, issues 1-2, April, 2022
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.