Udsalget slutter om
Udvidet returret til d. 31. januar 2025

Machine learning

Her finder du spændende bøger om Machine learning. Nedenfor er et flot udvalg af over 623 bøger om emnet. Det er også her du finder emner som Deep learning.
Vis mere
Filter
Filter
Sorter efterSorter Populære
  • af Sourish Das
    1.711,95 kr.

    This book prepares students to execute the quantitative and computational needs of the finance industry. The quantitative methods are explained in detail with examples from real financial problems like option pricing, risk management, portfolio selection, etc. Codes are provided in R programming language to execute the methods. Tables and figures, often with real data, illustrate the codes. References to related work are intended to aid the reader to pursue areas of specific interest in further detail. The comprehensive background with economic, statistical, mathematical, and computational theory strengthens the understanding. The coverage is broad, and linkages between different sections are explained. The primary audience is graduate students, while it should also be accessible to advanced undergraduates. Practitioners working in the finance industry will also benefit.

  • af Simon Thompson
    525,95 kr.

    Guide machine learning projects with the techniques in this unique project management guide. Managing Machine Learning Projects is a comprehensive guide to delivering successful machine learning projects from idea to production. The book is laid out as a series of fictionalised sprints that take you from pre-project requirements and proposal development all the way to deployment. You will discover battle-tested techniques for ensuring you have the appropriate data infrastructure, coordinating ML experiments, and measuring model performance. With this book as your guide, you will know how to bring a project to a successful conclusion, and how to use your lessons learned for future projects. About the reader This book is for anyone interested in better management of machine learning projects. No technical skills are required!

  • af Charu C. Aggarwal
    654,95 kr.

  • af Diego Oliva, Salvador Hinojosa & Essam H. Houssein
    1.835,95 kr.

  • af Djedjiga Mouheb, Mourad Debbabi, Elmouatez Billah Karbab & mfl.
    1.980,95 kr.

  • af Aymeric Histace & Jorge Bernal
    1.688,95 kr.

  • af Peter K. Matthews -. Akukalia
    567,95 - 762,95 kr.

  • af Shahab D. Mohaghegh
    1.256,95 kr.

    Numerical simulation models are used in all engineering disciplines for modeling physical phenomena to learn how the phenomena work, and to identify problems and optimize behavior. Smart Proxy Models provide an opportunity to replicate numerical simulations with very high accuracy and can be run on a laptop within a few minutes, thereby simplifying the use of complex numerical simulations, which can otherwise take tens of hours. This book focuses on Smart Proxy Modeling and provides readers with all the essential details on how to develop Smart Proxy Models using Artificial Intelligence and Machine Learning, as well as how it may be used in real-world cases.Covers replication of highly accurate numerical simulations using Artificial Intelligence and Machine LearningDetails application in reservoir simulation and modeling and computational fluid dynamicsIncludes real case studies based on commercially available simulatorsSmart Proxy Modeling is ideal for petroleum, chemical, environmental, and mechanical engineers, as well as statisticians and others working with applications of data-driven analytics.

  • af Seyedeh Leili (Electrical and Computer Engineering dept Mirtaheri & Reza Shahbazian
    737,95 - 1.891,95 kr.

  • af Alessa Hering
    815,95 kr.

    This book constitutes the refereed proceedings of the 10th International Workshop on Biomedical Image Registration, WBIR 2020, which was supposed to be held in Munich, Germany, in July 2022.The 11 full and poster papers together with 17 short papers included in this volume were carefully reviewed and selected from 32 submitted papers. The papers are organized in the following topical sections: optimization, deep learning architectures, neuroimaging, diffeomorphisms, uncertainty, topology and metrics.

  • af Sergey I. Nikolenko
    1.701,95 kr.

  • af Panos M. Pardalos, Michael N. Vrahatis & Varvara Rasskazova
    1.413,95 kr.

  • af Parisa Eslambolchilar
    878,95 kr.

    Intelligent Computing for Interactive System Design provides a comprehensive resource on what has become the dominant paradigm in designing novel interaction methods, involving gestures, speech, text, touch and brain-controlled interaction, embedded in innovative and emerging human-computer interfaces. These interfaces support ubiquitous interaction with applications and services running on smartphones, wearables, in-vehicle systems, virtual and augmented reality, robotic systems, the Internet of Things (IoT), and many other domains that are now highly competitive, both in commercial and in research contexts. This book presents the crucial theoretical foundations needed by any student, researcher, or practitioner working on novel interface design, with chapters on statistical methods, digital signal processing (DSP), and machine learning (ML). These foundations are followed by chapters that discuss case studies on smart cities, brain-computer interfaces, probabilistic mobile text entry, secure gestures, personal context from mobile phones, adaptive touch interfaces, and automotive user interfaces. The case studies chapters also highlight an in-depth look at the practical application of DSP and ML methods used for processing of touch, gesture, biometric, or embedded sensor inputs. A common theme throughout the case studies is ubiquitous support for humans in their daily professional or personal activities. In addition, the book provides walk-through examples of different DSP and ML techniques and their use in interactive systems. Common terms are defined, and information on practical resources is provided (e.g., software tools, data resources) for hands-on project work to develop and evaluate multimodal and multi-sensor systems. In a series of in-chapter commentary boxes, an expert on the legal and ethical issues explores the emergent deep concerns of the professional community, on how DSP and ML should be adopted and used in socially appropriate ways, to most effectively advance human performance during ubiquitous interaction with omnipresent computers. This carefully edited collection is written by international experts and pioneers in the fields of DSP and ML. It provides a textbook for students and a reference and technology roadmap for developers and professionals working on interaction design on emerging platforms.

  • af Patrick Gilbert
    278,95 - 398,95 kr.

  • - 9th International Conference, ICSI 2018, Shanghai, China, June 17-22, 2018, Proceedings, Part II
    af Ying Tan
    597,95 - 2.003,95 kr.

    The two-volume set of LNCS 10941 and 10942 constitutes the proceedings of the 9th International Conference on Advances in Swarm Intelligence, ICSI 2018, held in Shanghai, China, in June 2018. The total of 113 papers presented in these volumes was carefully reviewed and selected from 197 submissions. The papers were organized in topical sections namely: multi-agent systems; swarm robotics; fuzzy logic approaches; planning and routing problems; recommendation in social media; predication; classification; finding patterns; image enhancement; deep learning; theories and models of swarm intelligence; ant colony optimization; particle swarm optimization; artificial bee colony algorithms; genetic algorithms; differential evolution; fireworks algorithm; bacterial foraging optimization; artificial immune system; hydrologic cycle optimization; other swarm-based optimization algorithms; hybrid optimization algorithms; multi-objective optimization; large-scale global optimization.

  • af Micheal Lanham
    573,95 kr.

    In Evolutionary Deep Learning you'll master a toolbox of EC techniques that can be applied to any stage of the deep learning pipeline--from data collection, to hyperparameter tuning, and even optimizing network architecture. Hands-on examples demonstrate genetic algorithms and other EC approaches in action, and apply evolutionary deep learning to network topology, criterion loss and rewards, generative modeling, and reinforcement learning. Google Colab notebooks make it easy to experiment and play around with each exciting example. By the time you've finished reading, you'll be ready to build deep learning models as self-sufficient systems you can efficiently adapt to changing requirements.

  • af Frank L. Lewis, Kyriakos G. Vamvoudakis, Yan Wan & mfl.
    2.423,95 kr.

  • af Michael C. Fu & Prashanth L. A.
    1.098,95 kr.

  • af Peter Cotton
    201,95 kr.

    "The artificial intelligence revolution is leaving behind small businesses and organizations who cannot afford to hire in-house teams of data scientists to build bespoke models. This book explores the nature of repeated quantitative tasks driving business optimization, from the perspective of economics, statistics, decision making under uncertainty, and privacy preserving computation"--

  • af Mohamed Medhat Gaber & Muhammad Habib Ur Rehman
    1.786,95 kr.

  • af David Sweet
    561,95 kr.

    Learn how to evaluate the changes you make to your system and ensure that your testing does not undermine revenue or other business metrics. Experimentation for Engineers: From A/B testing to Bayesian optimization delivers a toolbox of processes for optimising software systems. From learning the limits of A/B testing to advanced experimentation strategies involving machine learning and probabilistic methods, this practical guide will help you master the skills. It will also help you minimise the costs of experimentation and will quickly reveal which approaches and features deliver the best business results. What's inside Design, run, and analyse an A/B test Break the "feedback loops" caused by periodic retraining of ML models Increase experimentation rate with multi-armed bandits Tune multiple parameters experimentally with Bayesian optimisation About the reader For ML and software engineers looking to extract the most value from their systems. Examples are found in Python and NumPy.

  • af Philip Osborne
    612,95 kr.

    Reinforcement learning is a powerful tool in artificial intelligence in which virtual or physical agents learn to optimize their decision making to achieve long-term goals. In some cases, this machine learning approach can save programmers time, outperform existing controllers, reach super-human performance, and continually adapt to changing conditions. This book argues that these successes show reinforcement learning can be adopted successfully in many different situations, including robot control, stock trading, supply chain optimization, and plant control. However, reinforcement learning has traditionally been limited to applications in virtual environments or simulations in which the setup is already provided. Furthermore, experimentation may be completed for an almost limitless number of attempts risk-free. In many real-life tasks, applying reinforcement learning is not as simple as (1) data is not in the correct form for reinforcement learning, (2) data is scarce, and (3) automation has limitations in the real-world. Therefore, this book is written to help academics, domain specialists, and data enthusiast alike to understand the basic principles of applying reinforcement learning to real-world problems. This is achieved by focusing on the process of taking practical examples and modeling standard data into the correct form required to then apply basic agents. To further assist with readers gaining a deep and grounded understanding of the approaches, the book shows hand-calculated examples in full and then how this can be achieved in a more automated manner with code. For decision makers who are interested in reinforcement learning as a solution but are not technically proficient we include simple, non-technical examples in the introduction and case studies section. These provide context of what reinforcement learning offer but also the challenges and risks associated with applying it in practice. Specifically, the book illustrates the differences between reinforcement learning and other machine learning approaches as well as how well-known companies have found success using the approach to their problems.

  • af Guoxiang Zhang
    609,95 kr.

    This SpringerBrief presents novel methods of approaching challenging problems in the reconstruction of accurate 3D models and serves as an introduction for further 3D reconstruction methods. It develops a 3D reconstruction system that produces accurate results by cascading multiple novel loop detection, sifting, and optimization methods.The authors offer a fast point cloud registration method that utilizes optimized randomness in random sample consensus for surface loop detection. The text also proposes two methods  for surface-loop sifting. One is supported by a sparse-feature-based optimization graph. This graph is more robust to different scan patterns than earlier methods and can cope with tracking failure and recovery. The other is an offline algorithm that can sift loop detections based on their impact on loop optimization results and which is enabled by a dense map posterior metric for 3D reconstruction and mapping performance evaluation works without any costly ground-truth data.The methods presented in Towards Optimal Point Cloud Processing for 3D Reconstruction will be of assistance to researchers developing 3D modelling methods and to workers in the wide variety of fields that exploit such technology including metrology, geological animation and mass customization in smart manufacturing.

  • af Sarath Sreedharan
    620,95 kr.

    From its inception, artificial intelligence (AI) has had a rather ambivalent relationship with humans-swinging between their augmentation and replacement. Now, as AI technologies enter our everyday lives at an ever-increasing pace, there is a greater need for AI systems to work synergistically with humans. One critical requirement for such synergistic humanAI interaction is that the AI systems' behavior be explainable to the humans in the loop. To do this effectively, AI agents need to go beyond planning with their own models of the world, and take into account the mental model of the human in the loop. At a minimum, AI agents need approximations of the human's task and goal models, as well as the human's model of the AI agent's task and goal models. The former will guide the agent to anticipate and manage the needs, desires and attention of the humans in the loop, and the latter allow it to act in ways that are interpretable to humans (by conforming to their mental models of it), and be ready to provide customized explanations when needed. The authors draw from several years of research in their lab to discuss how an AI agent can use these mental models to either conform to human expectations or change those expectations through explanatory communication. While the focus of the book is on cooperative scenarios, it also covers how the same mental models can be used for obfuscation and deception. The book also describes several real-world application systems for collaborative decision-making that are based on the framework and techniques developed here. Although primarily driven by the authors' own research in these areas, every chapter will provide ample connections to relevant research from the wider literature. The technical topics covered in the book are self-contained and are accessible to readers with a basic background in AI.

  • af Leonhard Kunczik
    1.000,95 kr.

    This book explores the combination of Reinforcement Learning and Quantum Computing in the light of complex attacker-defender scenarios. Reinforcement Learning has proven its capabilities in different challenging optimization problems and is now an established method in Operations Research. However, complex attacker-defender scenarios have several characteristics that challenge Reinforcement Learning algorithms, requiring enormous computational power to obtain the optimal solution. The upcoming field of Quantum Computing is a promising path for solving computationally complex problems. Therefore, this work explores a hybrid quantum approach to policy gradient methods in Reinforcement Learning. It proposes a novel quantum REINFORCE algorithm that enhances its classical counterpart by Quantum Variational Circuits. The new algorithm is compared to classical algorithms regarding the convergence speed and memory usage on several attacker-defender scenarios with increasing complexity. In addition, to study its applicability on today's NISQ hardware, the algorithm is evaluated on IBM's quantum computers, which is accompanied by an in-depth analysis of the advantages of Quantum Reinforcement Learning.

  • af Maria-Esther Vidal, Paul Groth, Fabian Suchanek, mfl.
    937,95 kr.

    Chapters ¿No. 10 and No. 21¿ are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

  • af Al-Sakib Khan Pathan, Yassine Maleh, Mamoun Alazab & mfl.
    1.998,95 kr.

  • af William L. Hamilton
    617,95 kr.

    Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis.This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

  • af Boi Mirsky
    568,95 kr.

    Intelligent systems often depend on data provided by information agents, for example, sensor data or crowdsourced human computation. Providing accurate and relevant data requires costly effort that agents may not always be willing to provide. Thus, it becomes important not only to verify the correctness of data, but also to provide incentives so that agents that provide high-quality data are rewarded while those that do not are discouraged by low rewards.We cover different settings and the assumptions they admit, including sensing, human computation, peer grading, reviews, and predictions. We survey different incentive mechanisms, including proper scoring rules, prediction markets and peer prediction, Bayesian Truth Serum, Peer Truth Serum, Correlated Agreement, and the settings where each of them would be suitable. As an alternative, we also consider reputation mechanisms. We complement the game-theoretic analysis with practical examples of applications in prediction platforms, community sensing, and peer grading.

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.