Vi bøger
Levering: 1 - 2 hverdage
Forlænget returret til d. 31. januar 2025

Bootstrapping - Christopher Z. Mooney - Bog

- A Nonparametric Approach to Statistical Inference

Bag om Bootstrapping

Bootstrapping, a computational nonparametric technique for `re-sampling'', enables researchers to draw a conclusion about the characteristics of a population strictly from the existing sample rather than by making parametric assumptions about the estimator. Using real data examples from per capita personal income to median preference differences between legislative committee members and the entire legislature, Mooney and Duval discuss how to apply bootstrapping when the underlying sampling distribution of the statistics cannot be assumed normal, as well as when the sampling distribution has no analytic solution. In addition, they show the advantages and limitations of four bootstrap confidence interval methods: normal approximation, percentile, bias-corrected percentile, and percentile-t. The authors conclude with a convenient summary of how to apply this computer-intensive methodology using various available software packages.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9780803953819
  • Indbinding:
  • Paperback
  • Sideantal:
  • 80
  • Udgivet:
  • 29. september 1993
  • Størrelse:
  • 137x216x4 mm.
  • Vægt:
  • 100 g.
  • 8-11 hverdage.
  • 16. januar 2025
Forlænget returret til d. 31. januar 2025
  •  

    Kan ikke leveres inden jul.
    Køb nu og print et gavebevis

Normalpris

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Bootstrapping

Bootstrapping, a computational nonparametric technique for `re-sampling'', enables researchers to draw a conclusion about the characteristics of a population strictly from the existing sample rather than by making parametric assumptions about the estimator. Using real data examples from per capita personal income to median preference differences between legislative committee members and the entire legislature, Mooney and Duval discuss how to apply bootstrapping when the underlying sampling distribution of the statistics cannot be assumed normal, as well as when the sampling distribution has no analytic solution. In addition, they show the advantages and limitations of four bootstrap confidence interval methods: normal approximation, percentile, bias-corrected percentile, and percentile-t. The authors conclude with a convenient summary of how to apply this computer-intensive methodology using various available software packages.

Brugerbedømmelser af Bootstrapping



Find lignende bøger
Bogen Bootstrapping findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.