Udvidet returret til d. 31. januar 2025

Deep Neural Networks in a Mathematical Framework - Anthony L. Caterini - Bog

Bag om Deep Neural Networks in a Mathematical Framework

This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783319753034
  • Indbinding:
  • Paperback
  • Sideantal:
  • 84
  • Udgivet:
  • 3. april 2018
  • Udgave:
  • 12018
  • Størrelse:
  • 234x156x14 mm.
  • Vægt:
  • 170 g.
  • 8-11 hverdage.
  • 9. december 2024
På lager

Normalpris

  • BLACK WEEK

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Deep Neural Networks in a Mathematical Framework

This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks.

Brugerbedømmelser af Deep Neural Networks in a Mathematical Framework



Find lignende bøger
Bogen Deep Neural Networks in a Mathematical Framework findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.