Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This textbook covers the general theory of Lie groups. By first considering the case of linear groups (following von Neumann''s method) before proceeding to the general case, the reader is naturally introduced to Lie theory.Written by a master of the subject and influential member of the Bourbaki group, the French edition of this textbook has been used by several generations of students. This translation preserves the distinctive style and lively exposition of the original. Requiring only basics of topology and algebra, this book offers an engaging introduction to Lie groups for graduate students and a valuable resource for researchers.
Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'''' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques.Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular functions and its modern version using the structure of the Lie algebra of SL(2,R).
Analysis Volume IV introduces the reader to functional analysis (integration, Hilbert spaces, harmonic analysis in group theory) and to the methods of the theory of modular functions (theta and L series, elliptic functions, use of the Lie algebra of SL2).
Ce 4ème volume de l'ouvrage Analyse mathématique initiera le lecteur à l'analyse fonctionnelle (intégration, espaces de Hilbert, analyse harmonique en théorie des groupes) et aux méthodes de la théorie des fonctions modulaires (séries L et theta, fonctions elliptiques, usage de l'algèbre de Lie de SL2). Tout comme pour les volumes 1 à 3, on reconnaîtra ici encore, le style inimitable de l'auteur et pas seulement par son refus de l'ecriture condensée en usage dans de nombreux manuels. Mariant judicieusement les mathématiques dites 'modernes' et' classiques', la première partie (Intégration) est d'utilité universelle tandis que la seconde oriente le lecteur vers un domaine de recherche spécialisé et très actif, avec de vastes généralisations possibles.
Functions in R and C, including the theory of Fourier series, Fourier integrals and part of that of holomorphic functions, form the focal topic of these two volumes.
Functions in R and C, including the theory of Fourier series, Fourier integrals and part of that of holomorphic functions, form the focal topic of these two volumes.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.