Udvidet returret til d. 31. januar 2025

Lectures on Algebraic Geometry II - Gunter Harder - Bog

- Basic Concepts, Coherent Cohomology, Curves and Their Jacobians

Bag om Lectures on Algebraic Geometry II

This second volume introduces the concept of shemes, reviews some commutative algebra and introduces projective schemes. The finiteness theorem for coherent sheaves is proved, here again the techniques of homological algebra and sheaf cohomology are needed. In the last two chapters, projective curves over an arbitrary ground field are discussed, the theory of Jacobians is developed, and the existence of the Picard scheme is proved. Finally, the author gives some outlook into further developments- for instance étale cohomology- and states some fundamental theorems.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783834804327
  • Indbinding:
  • Hardback
  • Sideantal:
  • 365
  • Udgivet:
  • 5. april 2011
  • Udgave:
  • 2011
  • Størrelse:
  • 252x180x28 mm.
  • Vægt:
  • 824 g.
  • 8-11 hverdage.
  • 29. november 2024
På lager

Normalpris

  • BLACK NOVEMBER

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Lectures on Algebraic Geometry II

This second volume introduces the concept of shemes, reviews some commutative algebra and introduces projective schemes. The finiteness theorem for coherent sheaves is proved, here again the techniques of homological algebra and sheaf cohomology are needed. In the last two chapters, projective curves over an arbitrary ground field are discussed, the theory of Jacobians is developed, and the existence of the Picard scheme is proved.
Finally, the author gives some outlook into further developments- for instance étale cohomology- and states some fundamental theorems.

Brugerbedømmelser af Lectures on Algebraic Geometry II



Find lignende bøger
Bogen Lectures on Algebraic Geometry II findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.