Udvidet returret til d. 31. januar 2025

Machine Learning Security with Azure - Georgia Kalyva - Bog

Bag om Machine Learning Security with Azure

Implement industry best practices to identify vulnerabilities and protect your data, models, environment, and applications while learning how to recover from a security breach Key Features:Learn about machine learning attacks and assess your workloads for vulnerabilities Gain insights into securing data, infrastructure, and workloads effectively Discover how to set and maintain a better security posture with the Azure Machine Learning platform Purchase of the print or Kindle book includes a free PDF eBook Book Description: With AI and machine learning (ML) models gaining popularity and integrating into more and more applications, it is more important than ever to ensure that models perform accurately and are not vulnerable to cyberattacks. However, attacks can target your data or environment as well. This book will help you identify security risks and apply the best practices to protect your assets on multiple levels, from data and models to applications and infrastructure. This book begins by introducing what some common ML attacks are, how to identify your risks, and the industry standards and responsible AI principles you need to follow to gain an understanding of what you need to protect. Next, you will learn about the best practices to secure your assets. Starting with data protection and governance and then moving on to protect your infrastructure, you will gain insights into managing access and securing your Azure ML workspace. This book introduces DevOps practices to automate your tasks securely and explains how to recover from ML attacks. Finally, you will learn how to set a security benchmark for your scenario and best practices to maintain and monitor your security posture. By the end of this book, you'll be able to implement best practices to assess and secure your ML assets throughout the Azure Machine Learning life cycle. What You Will Learn:Explore the Azure Machine Learning project life cycle and services Assess the vulnerability of your ML assets using the Zero Trust model Explore essential controls to ensure data governance and compliance in Azure Understand different methods to secure your data, models, and infrastructure against attacks Find out how to detect and remediate past or ongoing attacks Explore methods to recover from a security breach Monitor and maintain your security posture with the right tools and best practices Who this book is for: Machine learning book; Ai and machine learning for coders; Cybersecurity; Hand-on machine learning; Cybersecurity books This book is for anyone looking to learn how to assess, secure, and monitor every aspect of AI or machine learning projects running on the Microsoft Azure platform using the latest security and compliance, industry best practices, and standards. This is a must-have resource for machine learning developers and data scientists working on ML projects. IT administrators, DevOps, and security engineers required to secure and monitor Azure workloads will also benefit from this book, as the chapters cover everything from implementation to deployment, AI attack prevention, and recovery.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9781805120483
  • Indbinding:
  • Paperback
  • Sideantal:
  • 310
  • Udgivet:
  • 28. december 2023
  • Størrelse:
  • 191x17x235 mm.
  • Vægt:
  • 582 g.
  • 2-3 uger.
  • 11. december 2024
På lager

Normalpris

  • BLACK NOVEMBER

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Machine Learning Security with Azure

Implement industry best practices to identify vulnerabilities and protect your data, models, environment, and applications while learning how to recover from a security breach
Key Features:Learn about machine learning attacks and assess your workloads for vulnerabilities
Gain insights into securing data, infrastructure, and workloads effectively
Discover how to set and maintain a better security posture with the Azure Machine Learning platform
Purchase of the print or Kindle book includes a free PDF eBook
Book Description:
With AI and machine learning (ML) models gaining popularity and integrating into more and more applications, it is more important than ever to ensure that models perform accurately and are not vulnerable to cyberattacks. However, attacks can target your data or environment as well. This book will help you identify security risks and apply the best practices to protect your assets on multiple levels, from data and models to applications and infrastructure.
This book begins by introducing what some common ML attacks are, how to identify your risks, and the industry standards and responsible AI principles you need to follow to gain an understanding of what you need to protect. Next, you will learn about the best practices to secure your assets. Starting with data protection and governance and then moving on to protect your infrastructure, you will gain insights into managing access and securing your Azure ML workspace. This book introduces DevOps practices to automate your tasks securely and explains how to recover from ML attacks. Finally, you will learn how to set a security benchmark for your scenario and best practices to maintain and monitor your security posture.
By the end of this book, you'll be able to implement best practices to assess and secure your ML assets throughout the Azure Machine Learning life cycle.
What You Will Learn:Explore the Azure Machine Learning project life cycle and services
Assess the vulnerability of your ML assets using the Zero Trust model
Explore essential controls to ensure data governance and compliance in Azure
Understand different methods to secure your data, models, and infrastructure against attacks
Find out how to detect and remediate past or ongoing attacks
Explore methods to recover from a security breach
Monitor and maintain your security posture with the right tools and best practices
Who this book is for:
Machine learning book; Ai and machine learning for coders; Cybersecurity; Hand-on machine learning; Cybersecurity books
This book is for anyone looking to learn how to assess, secure, and monitor every aspect of AI or machine learning projects running on the Microsoft Azure platform using the latest security and compliance, industry best practices, and standards. This is a must-have resource for machine learning developers and data scientists working on ML projects. IT administrators, DevOps, and security engineers required to secure and monitor Azure workloads will also benefit from this book, as the chapters cover everything from implementation to deployment, AI attack prevention, and recovery.

Brugerbedømmelser af Machine Learning Security with Azure



Find lignende bøger
Bogen Machine Learning Security with Azure findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.