Vi bøger
Levering: 1 - 2 hverdage
Forlænget returret til d. 31. januar 2025

Meta-attributes and Artificial Networking - Kalachand (CSIR-National Geophysical Research Group Sain - Bog

- A New Tool for Seismic Interpretation

Bag om Meta-attributes and Artificial Networking

Applying machine learning to the interpretation of seismic data Seismic data gathered on the surface can be used to generate numerous seismic attributes that enable better understanding of subsurface geological structures and stratigraphic features. With an ever-increasing volume of seismic data available, machine learning augments faster data processing and interpretation of complex subsurface geology. Meta-Attributes and Artificial Networking: A New Tool for Seismic Interpretation explores how artificial neural networks can be used for the automatic interpretation of 2D and 3D seismic data. Volume highlights include: * Historic evolution of seismic attributes * Overview of meta-attributes and how to design them * Workflows for the computation of meta-attributes from seismic data * Case studies demonstrating the application of meta-attributes * Sets of exercises with solutions provided * Sample data sets available for hands-on exercises The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9781119482000
  • Indbinding:
  • Hardback
  • Sideantal:
  • 288
  • Udgivet:
  • 8. juli 2022
  • Størrelse:
  • 238x161x21 mm.
  • Vægt:
  • 572 g.
  • Ukendt - mangler pt..
Forlænget returret til d. 31. januar 2025
  •  

    Kan formentlig ikke leveres inden jul

Normalpris

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Meta-attributes and Artificial Networking

Applying machine learning to the interpretation of seismic data
Seismic data gathered on the surface can be used to generate numerous seismic attributes that enable better understanding of subsurface geological structures and stratigraphic features. With an ever-increasing volume of seismic data available, machine learning augments faster data processing and interpretation of complex subsurface geology.
Meta-Attributes and Artificial Networking: A New Tool for Seismic Interpretation explores how artificial neural networks can be used for the automatic interpretation of 2D and 3D seismic data.
Volume highlights include:
* Historic evolution of seismic attributes
* Overview of meta-attributes and how to design them
* Workflows for the computation of meta-attributes from seismic data
* Case studies demonstrating the application of meta-attributes
* Sets of exercises with solutions provided
* Sample data sets available for hands-on exercises
The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Brugerbedømmelser af Meta-attributes and Artificial Networking



Find lignende bøger
Bogen Meta-attributes and Artificial Networking findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.