Udvidet returret til d. 31. januar 2025

Partial Least Squares Regression - R Dennis Cook - Bog

- And Related Dimension Reduction Methods

Bag om Partial Least Squares Regression

Partial least squares (PLS) regression is, at its historical core, a black-box algorithmic method for dimension reduction and prediction based on an underlying linear relationship between a possibly vector-valued response and a number of predictors. Through envelopes, much more has been learned about PLS regression, resulting in a mass of information that allows an envelope bridge that takes PLS regression from a black-box algorithm to a core statistical paradigm based on objective function optimization and, more generally, connects the applied sciences and statistics in the context of PLS. This book focuses on developing this bridge. It also covers uses of PLS outside of linear regression, including discriminant analysis, non-linear regression, generalized linear models and dimension reduction generally. Key Features: Showcases the first serviceable method for studying high-dimensional regressions. Provides necessary background on PLS and its origin. R and Python programs are available for nearly all methods discussed in the book.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9781032773186
  • Indbinding:
  • Hardback
  • Udgivet:
  • 17. juli 2024
  • 2-4 uger.
  • 19. december 2024
På lager
Forlænget returret til d. 31. januar 2025

Normalpris

  • BLACK WEEK

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Partial Least Squares Regression

Partial least squares (PLS) regression is, at its historical core, a black-box algorithmic method for dimension reduction and prediction based on an underlying linear relationship between a possibly vector-valued response and a number of predictors. Through envelopes, much more has been learned about PLS regression, resulting in a mass of information that allows an envelope bridge that takes PLS regression from a black-box algorithm to a core statistical paradigm based on objective function optimization and, more generally, connects the applied sciences and statistics in the context of PLS. This book focuses on developing this bridge. It also covers uses of PLS outside of linear regression, including discriminant analysis, non-linear regression, generalized linear models and dimension reduction generally.
Key Features:
Showcases the first serviceable method for studying high-dimensional regressions. Provides necessary background on PLS and its origin. R and Python programs are available for nearly all methods discussed in the book.

Brugerbedømmelser af Partial Least Squares Regression



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.