Udvidet returret til d. 31. januar 2025

Perfectly Matched Layer (PML) for Computational Electromagnetics - Jean-Pierre Berenger - Bog

Bag om Perfectly Matched Layer (PML) for Computational Electromagnetics

This lecture presents the perfectly matched layer (PML) absorbing boundary condition (ABC) used to simulate free space when solving the Maxwell equations with such finite methods as the finite difference time domain (FDTD) method or the finite element method. The frequency domain and the time domain equations are derived for the different forms of PML media, namely the split PML, the CPML, the NPML, and the uniaxial PML, in the cases of PMLs matched to isotropic, anisotropic, and dispersive media. The implementation of the PML ABC in the FDTD method is presented in detail. Propagation and reflection of waves in the discretized FDTD space are derived and discussed, with a special emphasis on the problem of evanescent waves. The optimization of the PML ABC is addressed in two typical applications of the FDTD method: first, wave-structure interaction problems, and secondly, waveguide problems. Finally, a review of the literature on the application of the PML ABC to other numerical techniques of electromagnetics and to other partial differential equations of physics is provided. In addition, a software package for computing the actual reflection from a FDTD-PML is provided. It is available here.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783031005688
  • Indbinding:
  • Paperback
  • Sideantal:
  • 128
  • Udgivet:
  • 31. december 2007
  • Størrelse:
  • 191x8x235 mm.
  • Vægt:
  • 255 g.
  • 8-11 hverdage.
  • 28. november 2024
På lager

Normalpris

  • BLACK NOVEMBER

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Perfectly Matched Layer (PML) for Computational Electromagnetics

This lecture presents the perfectly matched layer (PML) absorbing boundary condition (ABC) used to simulate free space when solving the Maxwell equations with such finite methods as the finite difference time domain (FDTD) method or the finite element method. The frequency domain and the time domain equations are derived for the different forms of PML media, namely the split PML, the CPML, the NPML, and the uniaxial PML, in the cases of PMLs matched to isotropic, anisotropic, and dispersive media. The implementation of the PML ABC in the FDTD method is presented in detail. Propagation and reflection of waves in the discretized FDTD space are derived and discussed, with a special emphasis on the problem of evanescent waves. The optimization of the PML ABC is addressed in two typical applications of the FDTD method: first, wave-structure interaction problems, and secondly, waveguide problems. Finally, a review of the literature on the application of the PML ABC to other numerical techniques of electromagnetics and to other partial differential equations of physics is provided. In addition, a software package for computing the actual reflection from a FDTD-PML is provided. It is available here.

Brugerbedømmelser af Perfectly Matched Layer (PML) for Computational Electromagnetics



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.