Udvidet returret til d. 31. januar 2025

Schubert Calculus and Its Applications in Combinatorics and Representation Theory - Bog

Bag om Schubert Calculus and Its Applications in Combinatorics and Representation Theory

This book gathers research papers and surveys on the latest advances in Schubert Calculus, presented at the International Festival in Schubert Calculus, held in Guangzhou, China on November 6¿10, 2017. With roots in enumerative geometry and Hilbert's 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symmetries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way. The book is useful for researchers and graduate students interested in Schubert Calculus, and more generally in the study of flag manifolds in relation to algebraic geometry, combinatorics, representation theory and mathematical physics.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9789811574504
  • Indbinding:
  • Hardback
  • Sideantal:
  • 365
  • Udgivet:
  • 25. oktober 2020
  • Udgave:
  • 12020
  • Størrelse:
  • 155x235x0 mm.
  • Vægt:
  • 797 g.
  • Ukendt - mangler pt..
Forlænget returret til d. 31. januar 2025

Normalpris

  • BLACK WEEK

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Schubert Calculus and Its Applications in Combinatorics and Representation Theory

This book gathers research papers and surveys on the latest advances in Schubert Calculus, presented at the International Festival in Schubert Calculus, held in Guangzhou, China on November 6¿10, 2017. With roots in enumerative geometry and Hilbert's 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symmetries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way.

The book is useful for researchers and graduate students interested in Schubert Calculus, and more generally in the study of flag manifolds in relation to algebraic geometry, combinatorics, representation theory and mathematical physics.

Brugerbedømmelser af Schubert Calculus and Its Applications in Combinatorics and Representation Theory



Find lignende bøger
Bogen Schubert Calculus and Its Applications in Combinatorics and Representation Theory findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.