Udvidet returret til d. 31. januar 2025

Transparency and Interpretability for Learned Representations of Artificial Neural Networks - Richard Meyes - Bog

Bag om Transparency and Interpretability for Learned Representations of Artificial Neural Networks

Artificial intelligence (AI) is a concept, whose meaning and perception has changed considerably over the last decades. Starting off with individual and purely theoretical research efforts in the 1950s, AI has grown into a fully developed research field of modern times and may arguably emerge as one of the most important technological advancements of mankind. Despite these rapid technological advancements, some key questions revolving around the matter of transparency, interpretability and explainability of an AI¿s decision-making remain unanswered. Thus, a young research field coined with the general term Explainable AI (XAI) has emerged from increasingly strict requirements for AI to be used in safety critical or ethically sensitive domains. An important research branch of XAI is to develop methods that help to facilitate a deeper understanding for the learned knowledge of artificial neural systems. In this book, a series of scientific studies are presented that shed lighton how to adopt an empirical neuroscience inspired approach to investigate a neural network¿s learned representation in the same spirit as neuroscientific studies of the brain.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783658400033
  • Indbinding:
  • Paperback
  • Sideantal:
  • 236
  • Udgivet:
  • 28. november 2022
  • Udgave:
  • 22001
  • Størrelse:
  • 148x13x210 mm.
  • Vægt:
  • 348 g.
  • 8-11 hverdage.
  • 7. december 2024
På lager

Normalpris

  • BLACK NOVEMBER

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Transparency and Interpretability for Learned Representations of Artificial Neural Networks

Artificial intelligence (AI) is a concept, whose meaning and perception has changed considerably over the last decades. Starting off with individual and purely theoretical research efforts in the 1950s, AI has grown into a fully developed research field of modern times and may arguably emerge as one of the most important technological advancements of mankind. Despite these rapid technological advancements, some key questions revolving around the matter of transparency, interpretability and explainability of an AI¿s decision-making remain unanswered. Thus, a young research field coined with the general term Explainable AI (XAI) has emerged from increasingly strict requirements for AI to be used in safety critical or ethically sensitive domains. An important research branch of XAI is to develop methods that help to facilitate a deeper understanding for the learned knowledge of artificial neural systems. In this book, a series of scientific studies are presented that shed lighton how to adopt an empirical neuroscience inspired approach to investigate a neural network¿s learned representation in the same spirit as neuroscientific studies of the brain.

Brugerbedømmelser af Transparency and Interpretability for Learned Representations of Artificial Neural Networks



Find lignende bøger
Bogen Transparency and Interpretability for Learned Representations of Artificial Neural Networks findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.