Bag om Unsettled Topics on the Use of IVHM in the Active Control Loop
The growth in global economies has led to a world that has become much more mobile in the last few decades. The number of enplanements has increased and is expected to continue to do so at an annual average rate of 1.8% through 2039 [1]. Prior to the COVID-19 pandemic, the number of aircraft in service was expected to increase annually to meet the travel demand. Next-generation, more-complex aircraft were scheduled to replace the older aircraft at a pace that still allowed sufficient capacity to meet the increasing demand. The events of 2020 have driven the industry to accelerate retirement of older aircraft while deferring the introduction of new aircraft. While the length of the industry recovery period cannot be predicted, most analysts believe that demand for travel will return once a vaccine is widely available. The impact to the design of next-generation aircraft will likely be shaped by technologies that are being accelerated for the post-COVID world as well as for new mobility platforms. Technologies, such as artificial intelligence and fault-tolerant and self-adapting control, will use integrated vehicle health management (IVHM) capabilities as part of the decision-making processes. This SAE EDGE¿ Research Report seeks to explore the unsettled issues surrounding embedding IVHM information into the active control loops of modern aircraft systems and in future generations of aircraft designs.
NOTE: SAE EDGE¿ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE¿ Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. SAE EDGE¿ Research Reports are not intended to resolve the challenges they identify or close any topic to further scrutiny.
Vis mere