Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Studienarbeit aus dem Jahr 2012 im Fachbereich Mathematik - Geometrie, Note: 2.0, FernUniversität Hagen (Fachbereich Mathematik), Veranstaltung: Arbeit im Rahmen des MSc Mathematik - Methoden und Modelle (Abschluss 1.3), Sprache: Deutsch, Abstract: Mit der Euler-Formel wird der Abstand der Mittelpunkte von Umkreis und Inkreis eines Dreiecks berechnet. Das Besondere an dieser Formel ist, dass sie nicht etwa die Koordinaten der Eckpunkte oder die Seitenlängen des Dreiecks verwendet, sondern Größen, mit denen Dreiecke normalerweise nicht beschrieben werden: die Radien von Umkreis und Inkreis.Die Euler-Formel wird in gängigen Geometriebüchern nicht bewiesen. Nathan Bowler's Artikel "How anyone can prove Euler's Formulä skizziert dagegen gleich vier verschiedene Beweise. Gegenstand dieser Arbeit sind die beiden ersten Beweise hierin: Klassischer und Inversions-Beweis der Euler-Formel. Bowler setzt nicht nur Vieles voraus, sondern verwendet auch eine sehr kondensierte Darstellung. Daher werden hier in der folgenden Vorbereitung die nötigen Sätze hergeleitet bzw. bewiesen, bevor die eigentlichen Beweise der Euler-Formel entwickelt werden.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.