Vi bøger
Levering: 1 - 2 hverdage

Bøger i Applied Mathematical Sciences serien

Filter
Filter
Sorter efterSorter Serie rækkefølge
  • af Muhammad Sahimi
    1.759,95 kr.

    The first edition of this book was published in 1994. Since then considerable progress has been made in both theoretical developments of percolation theory, and in its applications. The 2nd edition of this book is a response to such developments. Not only have all of the chapters of the 1st edition been completely rewritten, reorganized, and updated all the way to 2022, but also 8 new chapters have been added that describe extensive new applications, including biological materials, networks and graphs, directed percolation, earthquakes, geochemical processes, and large-scale real world problems, from spread of technology to ad-hoc mobile networks.

  • af Yuri A. Kuznetsov
    1.353,95 kr.

    This is a book on nonlinear dynamical systems and their bifurcations under parameter variation. It provides a reader with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems. Special attention is given to efficient numerical implementations of the developed techniques. Several examples from recent research papers are used as illustrations. The book is designed for advanced undergraduate or graduate students in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the previous editions, while updating the context to incorporate recent theoretical and software developments and modern techniques for bifurcation analysis. From reviews of earlier editions: "I know of no other book that so clearly explains the basic phenomena of bifurcation theory." - Math Reviews "The book is a fine addition to the dynamical systems literature. It is good to see, in our modern rush to quick publication, that we, as a mathematical community, still have time to bring together, and in such a readable and considered form, the important results on our subject." - Bulletin of the AMS "It is both a toolkit and a primer" - UK Nonlinear News

  • af Eric Chung
    1.133,95 kr.

    This monograph is devoted to the study of multiscale model reduction methods from the point of view of multiscale finite element methods. Multiscale numerical methods have become popular tools for modeling processes with multiple scales. These methods allow reducing the degrees of freedom based on local offline computations. Moreover, these methods allow deriving rigorous macroscopic equations for multiscale problems without scale separation and high contrast. Multiscale methods are also used to design efficient solvers. This book offers a combination of analytical and numerical methods designed for solving multiscale problems. The book mostly focuses on methods that are based on multiscale finite element methods. Both applications and theoretical developments in this field are presented. The book is suitable for graduate students and researchers, who are interested in this topic.

  • af Lúcia Brandão Dias
    657,95 kr.

    This book introduces the reader to the study of Hamiltonian systems, focusing on the stability of autonomous and periodic systems and expanding to topics that are usually not covered by the canonical literature in the field. It emerged from lectures and seminars given at the Federal University of Pernambuco, Brazil, known as one of the leading research centers in the theory of Hamiltonian dynamics.This book starts with a brief review of some results of linear algebra and advanced calculus, followed by the basic theory of Hamiltonian systems. The study of normal forms of Hamiltonian systems is covered by Ch.3, while Chapters 4 and 5 treat the normalization of Hamiltonian matrices. Stability in non-linear and linear systems are topics in Chapters 6 and 7. This work finishes with a study of parametric resonance in Ch. 8. All the background needed is presented, from the Hamiltonian formulation of the laws of motion to the application of the Krein-Gelfand-Lidskii theory of stronglystable systems.With a clear, self-contained exposition, this work is a valuable help to advanced undergraduate and graduate students, and to mathematicians and physicists doing research on this topic.

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.