Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This Element presents one of the most recent developments in network science in a highly accessible style. This Element will be of interest to interdisciplinary scientists working in network science, in addition to mathematicians working in discrete topology and geometry and physicists working in quantum gravity.
This Element reviews fundamental models and methods for the geometric description of real networks with a focus on applications of real network maps, including decentralized routing protocols, geometric community detection, and the self-similar multiscale unfolding of networks by geometric renormalization.
In this Element, the authors discuss a number of ways in which the idea of modularity can be conceptualised, focusing specifically on the interplay between modular network structure and dynamics taking place on a network.
In many systems consisting of interacting subsystems, the complex interactions between elements can be represented using multilayer networks. However, percolation is not trivially generalised to multiple layers. This Element describes a generalisation of percolation to multilayer networks: weak multiplex percolation.
Complex networks datasets often come with the problem of missing information: interactions data that have not been measured or discovered, may be affected by errors, or are simply hidden because of privacy issues. This Element provides an overview of the ideas, methods and techniques to deal with this problem and that together define the field of network reconstruction. Given the extent of the subject, the authors focus on the inference methods rooted in statistical physics and information theory. The discussion is organized according to the different scales of the reconstruction task, that is, whether the goal is to reconstruct the macroscopic structure of the network, to infer its mesoscale properties, or to predict the individual microscopic connections.
Many multiagent dynamics can be modeled as a stochastic process in which the agents in the system change their state over time in interaction with each other. The Gillespie algorithms are popular algorithms that exactly simulate such stochastic multiagent dynamics when each state change is driven by a discrete event, the dynamics is defined in continuous time, and the stochastic law of event occurrence is governed by independent Poisson processes. The first main part of this volume provides a tutorial on the Gillespie algorithms focusing on simulation of social multiagent dynamics occurring in populations and networks. The authors clarify why one should use the continuous-time models and the Gillespie algorithms in many cases, instead of easier-to-understand discrete-time models. The remainder of the Element reviews recent extensions of the Gillespie algorithms aiming to add more reality to the model (i.e., non-Poissonian cases) or to speed up the simulations. This title is also available as open access on Cambridge Core.
Networks are convenient mathematical models to represent the structure of complex systems, from cells to societies. In the last decade, multilayer network science - the branch of the field dealing with units interacting in multiple distinct ways, simultaneously - was demonstrated to be an effective modeling and analytical framework for a wide spectrum of empirical systems, from biopolymers networks (such as interactome and metabolomes) to neuronal networks (such as connectomes), from social networks to urban and transportation networks. In this Element, a decade after one of the most seminal papers on this topic, the authors review the most salient features of multilayer network science, covering both theoretical aspects and direct applications to real-world coupled/interdependent systems, from the point of view of multilayer structure, dynamics and function. The authors discuss potential frontiers for this topic and the corresponding challenges in the field for the next future.
Percolation theory is a well studied process utilized by networks theory to understand the resilience of networks under random or targeted attacks. Despite their importance, spatial networks have been less studied under the percolation process compared to the extensively studied non-spatial networks. In this Element, the authors will discuss the developments and challenges in the study of percolation in spatial networks ranging from the classical nearest neighbors lattice structures, through more generalized spatial structures such as networks with a distribution of edge lengths or community structure, and up to spatial networks of networks.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.