Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales. Synthesizes available UQ methods for materials modelingProvides practical tools and examples for problem solving in modeling material behavior across various length scalesDemonstrates UQ in density functional theory, molecular dynamics, kinetic Monte Carlo, phase field, finite element method, multiscale modeling, and to support decision making in materials designCovers quantum, atomistic, mesoscale, and engineering structure-level modeling and simulation
Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques provides a detailed overview of the latest developments in the mechanics of modern metal forming manufacturing. Focused on mechanics as opposed to process, it looks at the mechanical behavior of materials exposed to loading and environmental conditions related to modern manufacturing processes, covering deformation as well as damage and fracture processes. The book progresses from forming to machining and surface-treatment processes, and concludes with a series of chapters looking at recent and emerging technologies. Other topics covered include simulations in autofrettage processes, modeling strategies related to cutting simulations, residual stress caused by high thermomechanical gradients and pultrusion, as well as the mechanics of the curing process, forging, and cold spraying, among others. Some non-metallic materials, such as ceramics and composites, are covered as well. Synthesizes the latest research in the mechanics of modern metal forming processesSuggests theoretical models and numerical codes to predict mechanical responsesCovers mechanics of shot peening, pultrusion, hydroforming, magnetic pulse formingConsiders applicability of different materials and processes for optimum performance
The Mechanics of Hydrogels: Mechanical Properties, Testing, and Applications offers readers a systematic description of the mechanical properties and characterizations of hydrogels. Practical topics such as manufacturing hydrogels with controlled mechanical properties and the mechanical testing of hydrogels are covered at length, as are areas such as inelastic and nonlinear deformation, rheological characterization, fracture and indentation testing, mechanical properties of cellularly responsive hydrogels, and more. Proper instrumentation and modeling techniques for measuring the mechanical properties of hydrogels are also explored. Links the mechanical and biological behaviors and applications of hydrogels Looks at the manufacturing and mechanical testing of hydrogels Discusses the design and use of hydrogels in a wide array of applications
Mechanics of Fibrous Networks covers everything there is to know about the mechanics of fibrous networks, from basic analysis of simple networks to the characterization of complex cases of deformation, loading, damage and fracture. Looking at various types of fibrous materials, the book studies their microstructural characterization, quantification of their mechanical properties, and performance at fiber and network levels. In addition, the book outlines numerical strategies for simulation, design and optimization of fibrous products. Techniques for testing the mechanical response of these materials in different loading and environmental conditions are outlined as well. This comprehensive resource will aid readers in obtaining qualitative data for various fibrous networks. In addition, it will help them develop modeling strategies and fine-tune mechanical performance fibrous networks and products by changing their microstructure to develop new products with desired properties and performance.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.