Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The reader will find in this volume the Proceedings of the NATO Advanced Study Institute held in Cortina d'Ampezzo, Italy between August 3 and August 13, 1987 under the title "e;Long Term Dynamical Behaviour of Natural and Artificial N-body Systems"e;. The Institute was the latest in a series held in 1972, 1975, 1978, 1981, 1984 in dynamical astronomy, theoretical mechanics and celestial mechanics under the Directorship of Professor Victor Szebehely. These previous institutes, held in high esteem by the international community of research workers, have resulted in a series of well-received and valuable Proceedings. In correspondence with Professor Szebehely and in long discussions with him in Colorado in August 1985, I agreed to his request that I undertake the preparation of a new ASI. I was happy to do so knowing I could call upon his vast experience in overseeing such ASI's. The last quarter century has been a period in which increasingly rapid progress has been made in celestial mechanics and related subjects not only because of the appearance of new problems urgently requiring solution but also because of the advent of new analytical techniques and powerful computer hardware and software.
Observation, Prediction and Simulation of Phase Transitions in Complex Fluids presents an overview of the phase transitions that occur in a variety of soft-matter systems: colloidal suspensions of spherical or rod-like particles and their mixtures, directed polymers and polymer blends, colloid--polymer mixtures, and liquid-forming mesogens. This modern and fascinating branch of condensed matter physics is presented from three complementary viewpoints. The first section, written by experimentalists, emphasises the observation of basic phenomena (by light scattering, for example). The second section, written by theoreticians, focuses on the necessary theoretical tools (density functional theory, path integrals, free energy expansions). The third section is devoted to the results of modern simulation techniques (Gibbs ensemble, free energy calculations, configurational bias Monte Carlo). The interplay between the disciplines is clearly illustrated. For all those interested in modern research in equilibrium statistical mechanics.
As recent developments have shown, supersymmetric quantum field theory and string theory are intimately related, with advances in one area often shedding light on the other. The organising ideas of most of these advances are the notion of duality and the physics of higher dimensional objects or p-branes. The topics covered in the present volume include duality in field theory, in particular in supersymmetric field theory and supergravity, and in string theory. The Seiberg-Witten theory and its recent developments are also covered in detail. A large fraction of the volume is devoted to the current state of the art in M-theory, in particular its underlying superalgebra as well as its connection with superstring and N = 2 strings. The physics of D-branes and its essential role in the beautiful computation of the black hole entropy is also carefully covered. Finally, the last two sets of lectures are devoted to the exciting matrix approach to non-perturbative string theory.
The Mediterranean is one of the most studied regions of the world. In spite of this, a considerable spread of opinions exists about the geodynamic evolution and the present tectonic setting of this zone. The difficulty in recognizing the driving mechanisms of deformation is due to a large extent to the complex distribution in space and time of tectonic events, to the high number of parameters involved in this problem and to the scarce possibility of carrying out quantitative estimates of the deformation implied by the various geodynamic hypotheses. However, we think that a great deal of the present ambiguity could be removed if there were more frequent and open discussions among the scientists who are working on this problem. The meeting ofERICE was organized to provide an opportunity in this sense. In making this effort, we were prompted by the conviction that each step towards the understanding of the Mediterranean evolution is of basic importance both for its scientific consequences and for the possibleimplicationsfor society. It is well known, for instance, that the knowledge ofongoing tectonic processes in a given region and of their connection with seismic activity may lead to the recognition of middle- long term precursors of strong earthquakes. The few cases of tentative earthquake prediction in the world occurred where information on large scale seismotectonic behavior was available. This led to identify the zones prone to dangerous shocks, where observations of short-term earthquake precursors were then concentrated.
The study of defects and disorder in solids remains a central topic in solid state science. Developments in the field continue to be promoted by new experimental and theoretical techniques, while further impetus for the study of disorder in solids is provided by the growing range of applications of solid state materials in which disorder at the atomic level plays a crucial rOle. In this book we attempt to present a survey of fundamental and applied aspects of the field. We consider the basic aspects of defective crystalline and amorphous solids. We discuss recent studies of structural, electronic, transport, thermodynamic and spectroscopic properties of such materials. Experimental and theoretical methodologies are reviewed, and detailed consideration is given to materials such as fast ion conductors and amorphous semiconductors that are of importance in an applied context. Any survey of this large field is necessarily selective. We have chosen to emphasise insulating (especially oxidic) and semi-conducting materials. But many of the approaches and techniques we describe apply generally across the entire field of solid state science. This volume is based on a NATO ASI held at the Residencia Santa Teresa de Jesus, Madrid in September 1991. The Editor is grateful to the NATO Scientific Affairs Division for their sponsorship of this School. Thanks are also due to all who participated in and lectured at the school, but especially to the organising committee of A. V. Chadwick, G. N. Greaves, M. Grigorkiewicz, J. H. Harding and S. Kalbitzer. C. R. A.
The aim of this volume is to reinforce the interaction between the three main branches (abstract, convex and computational) of the theory of polytopes. The articles include contributions from many of the leading experts in the field, and their topics of concern are expositions of recent results and in-depth analyses of the development (past and future) of the subject. The subject matter of the book ranges from algorithms for assignment and transportation problems to the introduction of a geometric theory of polyhedra which need not be convex. With polytopes as the main topic of interest, there are articles on realizations, classifications, Eulerian posets, polyhedral subdivisions, generalized stress, the Brunn--Minkowski theory, asymptotic approximations and the computation of volumes and mixed volumes. For researchers in applied and computational convexity, convex geometry and discrete geometry at the graduate and postgraduate levels.
Since the discovery that polymer single crystals are composed of chain folded macromolecules in 1957, the crystallization of polymers has attracted considerable interest and still provides fascinating and fruitful areas of research. Only a few books have been fully devoted to the crystallization of polymers in the past. This book contains the proceedings of the NATO ARW devoted to the `Crystallization of Polymers' which took place in September 1992 at the University of Mons-Hainaut (Belgium). In view of the variety of papers devoted to the crystallization of polymers, this book will be used in the next few years as a reference book for scientists concerned in the field of polymer physical chemistry. Crystallization of Polymers is mainly devoted to the experimental and theoretical study of the crystallization of synthetic polymers. As a kinetic study of the growth of polymer crystals should always be preceded by a morphological or a structural investigation, the structure, the morphology of polymer crystals and more particularly the lamellar and supralamellar organizations, as well as the nature of the crystal amorphous interface are reviewed and discussed.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.