Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Dieses Buch liefert eine anwendungsorientierte Einführung in die Datenauswertung mit der freien Statistikumgebung R. Es behandelt deskriptive Auswertungen ebenso umfassend wie inferenzstatistische Analysen. Neben klassischen univariaten Verfahren berücksichtigt das Buch nonparametrische Tests, Resampling-Methoden und multivariate Statistik. Zudem deckt es die vielfältigen Möglichkeiten ab, Daten aufzubereiten und Diagramme zu erstellen. Die statistischen Verfahren werden anhand von Beispielen erläutert und an vielen Stellen mit Diagrammen illustriert.Das Buch richtet sich an alle, die R kennenlernen und in konkreten Aufgabenstellungen einsetzen möchten, ohne bereits über Vorerfahrungen mit befehlsgesteuerten Programmen oder Programmiersprachen zu verfügen.Für die fünfte Auflage wurde das Buch vollständig aktualisiert: Es bezieht sich nun auf die Version 4.0.0 von R, auch die Auswahl und Darstellung verwendeter Zusatzpakete wurde der dynamischen Entwicklung angepasst.Außerdem wurde insbesondere der Abschnitt zur Datenaufbereitung überarbeitet: Zur stärkeren Ausrichtung auf Data-Science-Anwendungen stellt er nun ausführlich das Paket dplyr vor, enthält eine erweiterte Darstellung von R-Markdown-Dokumenten und bespricht Hinweise zur Reproduzierbarkeit von Auswertungen.
Dieses Buch beschäftigt sich mit den praktischen Fragestellungen statistischer Erhebungen (= Surveys) wie sie sich etwa in der empirischen akademischen Forschung, der offiziellen Statistik oder der kommerziellen Markt- und Meinungsforschung stellen:Wodurch unterscheiden sich verschiedene Stichprobendesigns?Wie sind sie praktisch umzusetzen (z. B. mit der Statistik-Freeware R)?Wie lassen sich die Daten- und die Ergebnisqualität beeinflussen?Wie kompensiert man Nonresponse? Wie können nichtzufällige Stichprobenverfahren und Big Data-Analysen im Zusammenhang mit den Aufgaben der Survey-Statistik funktionieren?Die Vermittlung des Methodenverständnisses wird unterstützt durch die verständnisorientierte Veranschaulichung der Basisideen. Diese Anschaulichkeit wird durch einfache und daher gut nachvollziehbare Beispiele gestützt. Für die vorliegende 3. Auflage wurde das Buch vollständig überarbeitet und inhaltlich unter anderem um die Betrachtung des Spannungsfeldes zwischen Survey-Theorie und -Praxis, die Grundlagen des Simulationsansatzes der Survey-Statistik und eine Auseinandersetzung mit den sich zunehmender Beliebtheit erfreuenden nichtzufälligen Stichprobenverfahren (inklusive den damit verwandten Big Data-Generierungsprozessen) erweitert. Jedes Kapitel wird zudem durch Aufgabenstellungen ergänzt, deren Umsetzung mit der Software R angeleitet wird.
Dieses Buch liefert eine Einführung in die Analyse multivariater Daten, indem es eine Vielzahl klassischer und neuerer quantitativer Verfahren behandelt. Das Buch wendet sich sowohl an Studierende im Bereich Statistik als auch an Personen aus Wissenschaft und Praxis, die Datenanalyse betreiben und dabei multivariate Verfahren anwenden wollen. Jedes Verfahren wird zunächst anhand eines realen Problems motiviert und mit kleinen Datensätzen veranschaulicht. Darauf aufbauend wird ausführlich die Zielsetzung des Verfahrens herausgearbeitet, gefolgt von einer detaillierten Entwicklung der Theorie. Praktische Aspekte runden die Darstellung des Verfahrens ab. An allen Stellen wird mit kleinen Datensätzen die Vorgehensweise veranschaulicht. Die notwendigen Berechnungen werden sowohl manuell als auch computergestützt dargestellt. Der weiteren Vertiefung des Stoffes dienen zahlreiche Übungsaufgaben. Ein geeignetes Werkzeug für die computergestützte Datenanalyse ist die Software R.Sie stellt zum einen eine Vielzahl von Funktionen zur Verfügung, zum anderen lässt sie sich leicht um weitere Funktionen ergänzen. Die Durchführung wird für jedes behandelte Verfahren ausführlich beschrieben. Vorkenntnisse in R sind nicht erforderlich.
R ist eine objektorientierte und interpretierte Sprache und Programmierumgebung für Datenanalyse und Grafik. Ausführlich führt der Autor in die Grundlagen ein und vermittelt eingängig die Struktur der Sprache. So ermöglicht er Lesern den leichten Einstieg: eigene Methoden umsetzen, Objektklassen definieren und Pakete aus Funktionen und zugehöriger Dokumentation zusammenstellen. Detailliert beschreibt er die enormen Grafikfähigkeiten von R. Für alle, die R als flexibles Werkzeug zur Datenanalyse und -visualisierung einsetzen. In 2. Auflage mit vielen Verbesserungen und Neuerungen von R-2.3.x und weiteren von Lesern gewünschten Ergänzungen.
Das UEbungsbuch enthalt eine ausgesuchte Sammlung von Problemstellungen und Loesungen - als Erganzung zu Statistik-Einfuhrungen. Eine Formelsammlung, ein Set von Programmen in R und eine kurze Einfuhrung in die Statistik-Software R komplettieren den Band.
In dieser Einführung werden erstmals klassische Regressionsansätze und moderne nicht- und semiparametrische Methoden in einer integrierten, einheitlichen und anwendungsorientierten Form beschrieben. Die Darstellung wendet sich an Studierende der Statistik in Wahl- und Hauptfach sowie an empirisch-statistisch und interdisziplinär arbeitende Wissenschaftler und Praktiker, zum Beispiel in Wirtschafts- und Sozialwissenschaften, Bioinformatik, Biostatistik, Ökonometrie, Epidemiologie. Die praktische Anwendung der vorgestellten Konzepte und Methoden wird anhand ausführlich vorgestellter Fallstudien demonstriert, um dem Leser die Analyse eigener Fragestellungen zu ermöglichen.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.