Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book discusses automated computing systems which are mostly powered by intelligent technologies like artificial intelligence, machine learning, image recognition, speech processing, cloud computing, etc., to perform complex automated tasks which are not possible by traditional computing systems. The chapters are extended version of research works presented at second PhD Research Symposium in various advanced technologies used in the field of computer science. This book provides an opportunity for the researchers to get ideas regarding the ongoing works that help them in formulating problems of their interest. The academicians can also be benefited to know about the current research trends that smooth the way to guide their students to carry out research work in the proper direction. The industry people will be also facilitated to know about the current advances in research work and materialize the research work into industrial applications.
This book encapsulates and occupies recent advances and state-of-the-art applications of nature-inspired computing (NIC) techniques in the field of bioinformatics and computational biology, which would aid medical sciences in various clinical applications. This edited volume covers fundamental applications, scope, and future perspectives of NIC techniques in bioinformatics including genomic profiling, gene expression data classification, DNA computation, systems and network biology, solving personalized therapy complications, antimicrobial resistance in bacterial pathogens, and computer-aided drug design, discovery, and therapeutics. It also covers the role of NIC techniques in various diseases and disorders, including cancer detection and diagnosis, breast cancer, lung disorder detection, disease biomarkers, and potential therapeutics identifications.
The book covers several entity and relation extraction techniques starting from the traditional feature-based techniques to the recent techniques using deep neural models. Two important focus areas of the book are - i) joint extraction techniques where the tasks of entity and relation extraction are jointly solved, and ii) extraction of complex relations where relation types can be N-ary and cross-sentence. The first part of the book introduces the entity and relation extraction tasks and explains the motivation in detail. It covers all the background machine learning concepts necessary to understand the entity and relation extraction techniques explained later. The second part of the book provides a detailed survey of the traditional entity and relation extraction problems covering several techniques proposed in the last two decades. The third part of the book focuses on joint extraction techniques which attempt to address both the tasks of entity and relation extraction jointly. Several joint extraction techniques are surveyed and summarized in the book. It also covers two joint extraction techniques in detail which are based on the authors' work. The fourth and the last part of the book focus on complex relation extraction, where the relation types may be N-ary (having more than two entity arguments) and cross-sentence (entity arguments may span multiple sentences). The book highlights several challenges and some recent techniques developed for the extraction of such complex relations including the authors' technique. The book also covers a few domain-specific applications where the techniques for joint extraction as well as complex relation extraction are applied.
This book is a collection of chapters in the newly developing area of ethics in artificial intelligence. The book comprises chapters written by leading experts in this area which makes it a one of its kind collections. Some key features of the book are its unique combination of chapters on both theoretical and practical aspects of integrating ethics into artificial intelligence. The book touches upon all the important concepts in this area including bias, discrimination, fairness, and interpretability. Integral components can be broadly divided into two segments ¿ the first segment includes empirical identification of biases, discrimination, and the ethical concerns thereof in impact assessment, advertising and personalization, computational social science, and information retrieval. The second segment includes operationalizing the notions of fairness, identifying the importance of fairness in allocation, clustering and time series problems, and applications of fairness in softwaretesting/debugging and in multi stakeholder platforms. This segment ends with a chapter on interpretability of machine learning models which is another very important and emerging topic in this area.
This book introduces nature-inspired algorithms and their applications to modern cryptography. It helps the readers to get into the field of nature-based approaches to solve complex cryptographic issues. This book provides a comprehensive view of nature-inspired research which could be applied in cryptography to strengthen security. It will also explore the novel research directives such as Clever algorithms and immune-based cyber resilience. New experimented nature-inspired approaches are having enough potential to make a huge impact in the field of cryptanalysis. This book gives a lucid introduction to this exciting new field and will promote further research in this domain. The book discusses the current landscape of cryptography and nature-inspired research and will be helpful to prospective students and professionals to explore further.
This book contains select papers presented at the 3rd International Conference on Engineering Mathematics and Computing (ICEMC 2020), held at the Haldia Institute of Technology, Purba Midnapur, West Bengal, India, from 5-7 February 2020. The book discusses new developments and advances in the areas of neural networks, connectionist systems, genetic algorithms, evolutionary computation, artificial intelligence, cellular automata, self-organizing systems, soft computing, fuzzy systems, hybrid intelligent systems, etc. The book, containing 19 chapters, is useful to the researchers, scholars, and practising engineers as well as graduate students of engineering and applied sciences.
This book elaborately discusses techniques commonly used to improve generalization performance in classification approaches. The contents highlight methods to improve classification performance in numerous case studies: ranging from datasets of UCI repository to predictive maintenance problems and cancer classification problems. The book specifically provides a detailed tutorial on how to approach time-series classification problems and discusses two real time case studies on condition monitoring. In addition to describing the various aspects a data scientist must consider before finalizing their approach to a classification problem and reviewing the state of the art for improving classification generalization performance, it also discusses in detail the authors own contributions to the field, including MVPC - a classifier with very low VC dimension, a graphical indices based framework for reliable predictive maintenance and a novel general-purpose membership functions for Fuzzy Support Vector Machine which provides state of the art performance with noisy datasets, and a novel scheme to introduce deep learning in Fuzzy Rule based classifiers (FRCs). This volume will serve as a useful reference for researchers and students working on machine learning, health monitoring, predictive maintenance, time-series analysis, gene-expression data classification.
The book discusses a broad overview of traditional machine learning methods and state-of-the-art deep learning practices for hardware security applications, in particular the techniques of launching potent "e;modeling attacks"e; on Physically Unclonable Function (PUF) circuits, which are promising hardware security primitives. The volume is self-contained and includes a comprehensive background on PUF circuits, and the necessary mathematical foundation of traditional and advanced machine learning techniques such as support vector machines, logistic regression, neural networks, and deep learning. This book can be used as a self-learning resource for researchers and practitioners of hardware security, and will also be suitable for graduate-level courses on hardware security and application of machine learning in hardware security. A stand-out feature of the book is the availability of reference software code and datasets to replicate the experiments described in the book.
This book discusses computational methods related to biological models using mathematical tools and techniques. The book chapters concentrate on numerical and analytical techniques that provide a global solution for biological models while keeping long-term benefits in mind. The solutions are useful in closely understanding biological models, and the results will be very useful for mathematicians, engineers, doctors, scientists and researchers working on real-life biological models. This book provides significant and current knowledge of biological models related to real-life applications. The book covers both methods and applications.
This book provides a comprehensive yet fresh perspective for the cutting-edge CI-oriented approaches in water resources planning and management. The book takes a deep dive into topics like meta-heuristic evolutionary optimization algorithms (e.g., GA, PSA, etc.), data mining techniques (e.g., SVM, ANN, etc.), probabilistic and Bayesian-oriented frameworks, fuzzy logic, AI, deep learning, and expert systems. These approaches provide a practical approach to understand and resolve complicated and intertwined real-world problems that often imposed serious challenges to traditional deterministic precise frameworks. The topic caters to postgraduate students and senior researchers who are interested in computational intelligence approach to issues stemming from water and environmental sciences.
This edited book provides information on emerging fields of next-generation healthcare informatics with a special emphasis on emerging developments and applications of artificial intelligence, deep learning techniques, computational intelligence methods, Internet of medical things (IoMT), optimization techniques, decision making, nanomedicine, and cloud computing. The book provides a conceptual framework and roadmap for decision-makers for this transformation. The chapters involved in this book cover challenges and opportunities for diabetic retinopathy detection based on deep learning applications, deep learning accelerators in IoT and IoMT, health data analysis, deep reinforcement-based conversational AI agent in healthcare systems, examination of health data performance, multisource data in intelligent medicine, application of genetic algorithms in health care, mental disorder, digital healthcare system with big data analytics, encryption methods in healthcare data security, computation and cognitive bias in healthcare intelligence and pharmacogenomics, guided imagery therapy, cancer detection and prediction techniques, medical image processing for coronavirus, and imbalance learning in health care.
This book discusses automated computing systems which are mostly powered by intelligent technologies like artificial intelligence, machine learning, image recognition, speech processing, cloud computing, etc., to perform complex automated tasks which are not possible by traditional computing systems. The chapters are extended version of research works presented at first Ph.D. Research Symposium in various advanced technologies used in the field of computer science. This book provides an opportunity for the researchers to get ideas regarding the ongoing works that help them in formulating problems of their interest. The academicians can also be benefited to know about the current research trends that smooth the way to guide their students to carry out research work in the proper direction. The industry people will be also facilitated to know about the current advances in research work and materialize the research work into industrial applications.
The book discusses how augmented intelligence can increase the efficiency and speed of diagnosis in healthcare organizations. The concept of augmented intelligence can reflect the enhanced capabilities of human decision-making in clinical settings when augmented with computation systems and methods. It includes real-life case studies highlighting impact of augmented intelligence in health care. The book offers a guided tour of computational intelligence algorithms, architecture design, and applications of learning in healthcare challenges. It presents a variety of techniques designed to represent, enhance, and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. It also presents specific applications of augmented intelligence in health care, and architectural models and frameworks-based augmented solutions.
This book highlights recent advances in the area of machine learning and robotics-based soft computing applications. The book covers various artificial intelligence, machine learning, and mechanics, a mix of mechanical computational engineering work. The current computing era has a huge market/potential for machine learning, robotics, and soft computing techniques and their applications. With this in view, the book shares latest research and cutting-edge applications useful for professionals and researchers in these areas.¿
This book gathers extended versions of papers presented at DoSIER 2021 (the 2021 Third Doctoral Symposium on Intelligence Enabled Research, held at Cooch Behar Government Engineering College, West Bengal, India, during November 12-13, 2021). The papers address the rapidly expanding research area of computational intelligence, which, no longer limited to specific computational fields, has since made inroads in signal processing, smart manufacturing, predictive control, robot navigation, smart cities, and sensor design, to name but a few. Presenting chapters written by experts active in these areas, the book offers a valuable reference guide for researchers and industrial practitioners alike and inspires future studies.
This book looks at cyber security challenges with topical advancements in computational intelligence and communication technologies. This book includes invited peer-reviewed chapters on the emerging intelligent computing and communication technology research advancements, experimental outcomes, and cyber security practices, threats, and attacks with challenges. The book begins with a state-of-the-art survey and reviews of cyber security trends and issues. It further covers areas such as developments in intelligent computing and communication, smart healthcare, agriculture, transportation, online education, and many more real-life applications using IoT, big data, cloud computing, artificial intelligence, data science, and machine learning. This book is of interest to graduate/postgraduate students, researchers, and academicians. This book will be a valuable resource for practitioners and professionals working in smart city visualization through secure and intelligent application design, development, deployment to foster digital revolution, and reliable integration of advanced computing and communication technologies with global significance.
This book encapsulates recent applications of CI methods in the field of computational oncology, especially cancer diagnosis, prognosis, and its optimized therapeutics.The cancer has been known as a heterogeneous disease categorized in several different subtypes. According to WHO's recent report, cancer is a leading cause of death worldwide, accounting for over 10 million deaths in the year 2020. Therefore, its early diagnosis, prognosis, and classification to a subtype have become necessary as it facilitates the subsequent clinical management and therapeutics plan. Computational intelligence (CI) methods, including artificial neural networks (ANNs), fuzzy logic, evolutionary computations, various machine learning and deep learning, and nature-inspired algorithms, have been widely utilized in various aspects of oncology research, viz. diagnosis, prognosis, therapeutics, and optimized clinical management. Appreciable progress has been made toward the understanding the hallmarks of cancer development, progression, and its effective therapeutics. However, notwithstanding the extrinsic and intrinsic factors which lead to drastic increment in incidence cases, the detection, diagnosis, prognosis, and therapeutics remain an apex challenge for the medical fraternity. With the advent in CI-based approaches, including nature-inspired techniques, and availability of clinical data from various high-throughput experiments, medical consultants, researchers, and oncologists have seen a hope to devise and employ CI in various aspects of oncology. The main aim of the book is to occupy state-of-the-art applications of CI methods which have been derived from core computer sciences to back medical oncology. This edited book covers artificial neural networks, fuzzy logic and fuzzy inference systems, evolutionary algorithms, various nature-inspired algorithms, and hybrid intelligent systems which are widely appreciated for the diagnosis, prognosis, and optimization of therapeutics of various cancers. Besides, this book also covers multi-omics exploration, gene expression analysis, gene signature identification of cancers, genomic characterization of tumors, anti-cancer drug design and discovery, drug response prediction by means of CI, and applications of IoT, IoMT, and blockchain technology in cancer research.
This book comprises carefully selected and reviewed outcomes of the 13th International Workshop on Automated Negotiations (ACAN) held in Vienna, 2022, in conjunction with International Joint Conference on Artificial Intelligence (IJCAI) 2022. It focuses on the applications and challenges of agent-based negotiation including agreement technology, mechanism design, electronic commerce, recommender systems, supply chain management, social choice theory, and others.This book is intended for the academic and industrial researchers of various communities of autonomous agents and multi-agent systems, as well as graduate students studying in those areas or having interest in them.
The book presents the state of the art of the Internet of Things (IoT), applied to Human-Centered Design (HCD) projects addressed to ageing users, from the perspective of health, care and well-being. The current focus on the ageing population is opening up new opportunities for the development of niche solutions aimed at the niche category of older users who are beginning to experience physical and cognitive decline but are still independent and need to maintain their autonomy for as long as possible. The combination between the needs expressed by older users and the opportunities offered by the recent innovative technologies related to the Internet of Things allows research institutions, stakeholders, and academia to target and design new solutions for older users, safeguarding their well-being, health, and care, improving their quality of life. This book discusses and analyses the most recent services, products, systems and environments specifically conceived for older users, in order to enhance health, care, well-being and improve their quality of life. This approach is coherent with the percept of AAL or enhanced living environment, looking to the users' comfort, autonomy, engagement and healthcare. The book describes and analyses aspects of HCD with older users looking to the emerging technologies, products, services, and environments analysed in their actual application in different areas, always concerning the design for the elderly related to the IoT, just as the development of biomonitoring devices, tools for activity recognition and simulation, creation of smart living environments, solutions for their autonomy, assistance and engagement enhancing health, care and wellbeing. The book is intended for researchers, designers, engineers, and practitioners in healthcare to connect academia, stakeholders, and research institutions to foster education, research and innovation.
The edited book is a consolidated handbook on quantum computing that covers quantum basic science and mathematics to advanced concepts and applications of quantum computing and quantum machine learning applied to diverse domains. The book includes dedicated chapters on introduction to quantum computing, its practical applications, the working behind quantum systems, quantum algorithms, quantum communications, and quantum cryptography. Each challenge that can be addressed with quantum technologies is further discussed from theoretical and practical perspectives. The book is divided into five parts: Part I: Scientific Theory for Quantum, Part II: Quantum Computing: Building Concepts, Part III: Quantum Algorithms- Theory & Applications, Part IV: Quantum Simulation Tools & Demonstrations, and Part V: Future Direction and Applications.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.