Udvidet returret til d. 31. januar 2025

Bøger i Synthesis Lectures on Data, Semantics, and Knowledge serien

Filter
Filter
Sorter efterSorter Serie rækkefølge
  • af Zhixian Yan
    397,95 kr.

    The dramatic progress of smartphone technologies has ushered in a new era of mobile sensing, where traditional wearable on-body sensors are being rapidly superseded by various embedded sensors in our smartphones. For example, a typical smartphone today, has at the very least a GPS, WiFi, Bluetooth, triaxial accelerometer, and gyroscope. Alongside, new accessories are emerging such as proximity, magnetometer, barometer, temperature, and pressure sensors. Even the default microphone can act as an acoustic sensor to track noise exposure for example. These sensors act as a "e;"e;lens"e;"e; to understand the user's context along different dimensions. Data can be passively collected from these sensors without interrupting the user. As a result, this new era of mobile sensing has fueled significant interest in understanding what can be extracted from such sensor data both instantaneously as well as considering volumes of time series from these sensors. For example, GPS logs can be used to determine automatically the significant places associated to a user's life (e.g., home, office, shopping areas). The logs may also reveal travel patterns, and how a user moves from one place to another (e.g., driving or using public transport). These may be used to proactively inform the user about delays, relevant promotions from shops, in his "e;"e;regular"e;"e; route. Similarly, accelerometer logs can be used to measure a user's average walking speed, compute step counts, gait identification, and estimate calories burnt per day. The key objective is to provide better services to end users. The objective of this book is to inform the reader of the methodologies and techniques for extracting meaningful information (called "e;"e;semantics"e;"e;) from sensors on our smartphones. These techniques form the cornerstone of several application areas utilizing smartphone sensor data. We discuss technical challenges and algorithmic solutions for modeling and mining knowledge from smartphone-resident sensor data streams. This book devotes two chapters to dive deep into a set of highly available, commoditized sensors---the positioning sensor (GPS) and motion sensor (accelerometer). Furthermore, this book has a chapter devoted to energy-efficient computation of semantics, as battery life is a major concern on user experience.

  • af Heiko Paulheim
    427,95 kr.

    This book explains the ideas behind one of the most well-known methods for knowledge graph embedding of transformations to compute vector representations from a graph, known as RDF2vec. The authors describe its usage in practice, from reusing pre-trained knowledge graph embeddings to training tailored vectors for a knowledge graph at hand. They also demonstrate different extensions of RDF2vec and how they affect not only the downstream performance, but also the expressivity of the resulting vector representation, and analyze the resulting vector spaces and the semantic properties they encode.

  • af Guo-Qiang Zhang
    531,95 - 667,95 kr.

    The book synthesizes research on the analysis of biomedical ontologies using formal concept analysis, including through auditing, curation, and enhancement. As the evolution of biomedical ontologies almost inevitably involves manual work, formal methods are a particularly useful tool for ontological engineering and practice, particularly in uncovering unexpected "e;bugs"e; and content materials.  The book first introduces simple but formalized strategies for discovering undesired and incoherent patterns in ontologies before exploring the application of formal concept analysis for semantic completeness. The book then turns to formal concept analysis, a classical approach used in the mathematical treatment of orders and lattices, as an ontological engineering principle, focusing on the structural property of ontologies with respect to its conformation to lattice or not (non-lattice). The book helpfully covers the development of more efficient algorithms for non-lattice detection and extraction required by exhaustive lattice/non-lattice analysis. The book goes on to highlight the power and utility of uncovering non-lattice structure for debugging ontologies and describes methods that leverage the linguistic information in concept names (labels) for ontological analysis. It also addresses visualization and performance evaluation issues before closing with an overview and forward-looking perspectives on the field.  This book is intended for graduate students and researchers interested in biomedical ontologies and their applications. It can be a useful supplement for courses on knowledge representation and engineering and also provide readers with a reference for related scientific publications and literature to assist in identifying potential research topics. All mathematical concepts and notations used in this book can be found in standard discrete mathematics textbooks, and the appendix at the end of the book provides a list of key ontological resources, as well as annotated non-lattice and lattice examples that were discovered using the authors' methods, demonstrating how "e;bugs are fixed"e; by converting non-lattices to lattices with minimal edit changes.

  • af Laura Po
    439,95 kr.

    Linked Data (LD) is a well-established standard for publishing and managing structured information on the Web, gathering and bridging together knowledge from different scientific and commercial domains. The development of Linked Data Visualization techniques and tools has been followed as the primary means for the analysis of this vast amount of information by data scientists, domain experts, business users, and citizens.This book covers a wide spectrum of visualization issues, providing an overview of the recent advances in this area, focusing on techniques, tools, and use cases of visualization and visual analysis of LD. It presents the basic concepts related to data visualization and the LD technologies, the techniques employed for data visualization based on the characteristics of data techniques for Big Data visualization, use tools and use cases in the LD context, and finally a thorough assessment of the usability of these tools under different scenarios.The purpose of this book is to offer a complete guide to the evolution of LD visualization for interested readers from any background and to empower them to get started with the visual analysis of such data. This book can serve as a course textbook or a primer for all those interested in LD and data visualization.

  • af Elisa Kendall
    531,95 kr.

    Ontologies have become increasingly important as the use of knowledge graphs, machine learning, natural language processing (NLP), and the amount of data generated on a daily basis has exploded. As of 2014, 90% of the data in the digital universe was generated in the two years prior, and the volume of data was projected to grow from 3.2 zettabytes to 40 zettabytes in the next six years. The very real issues that government, research, and commercial organizations are facing in order to sift through this amount of information to support decision-making alone mandate increasing automation. Yet, the data profiling, NLP, and learning algorithms that are ground-zero for data integration, manipulation, and search provide less than satisfactory results unless they utilize terms with unambiguous semantics, such as those found in ontologies and well-formed rule sets. Ontologies can provide a rich "e;schema"e; for the knowledge graphs underlying these technologies as well as the terminological and semantic basis for dramatic improvements in results. Many ontology projects fail, however, due at least in part to a lack of discipline in the development process. This book, motivated by the Ontology 101 tutorial given for many years at what was originally the Semantic Technology Conference (SemTech) and then later from a semester-long university class, is designed to provide the foundations for ontology engineering. The book can serve as a course textbook or a primer for all those interested in ontologies.

  • af Jose Emilio Labra Gayo
    604,95 kr.

    RDF and Linked Data have broad applicability across many fields, from aircraft manufacturing to zoology. Requirements for detecting bad data differ across communities, fields, and tasks, but nearly all involve some form of data validation. This book introduces data validation and describes its practical use in day-to-day data exchange.The Semantic Web offers a bold, new take on how to organize, distribute, index, and share data. Using Web addresses (URIs) as identifiers for data elements enables the construction of distributed databases on a global scale. Like the Web, the Semantic Web is heralded as an information revolution, and also like the Web, it is encumbered by data quality issues. The quality of Semantic Web data is compromised by the lack of resources for data curation, for maintenance, and for developing globally applicable data models.At the enterprise scale, these problems have conventional solutions. Master data management provides an enterprise-wide vocabulary, while constraint languages capture and enforce data structures. Filling a need long recognized by Semantic Web users, shapes languages provide models and vocabularies for expressing such structural constraints.This book describes two technologies for RDF validation: Shape Expressions (ShEx) and Shapes Constraint Language (SHACL), the rationales for their designs, a comparison of the two, and some example applications.

  • af Diana Maynard
    663,95 kr.

    This book introduces core natural language processing (NLP) technologies to non-experts in an easily accessible way, as a series of building blocks that lead the user to understand key technologies, why they are required, and how to integrate them into Semantic Web applications. Natural language processing and Semantic Web technologies have different, but complementary roles in data management. Combining these two technologies enables structured and unstructured data to merge seamlessly. Semantic Web technologies aim to convert unstructured data to meaningful representations, which benefit enormously from the use of NLP technologies, thereby enabling applications such as connecting text to Linked Open Data, connecting texts to each other, semantic searching, information visualization, and modeling of user behavior in online networks. The first half of this book describes the basic NLP processing tools: tokenization, part-of-speech tagging, and morphological analysis, in addition to the main tools required for an information extraction system (named entity recognition and relation extraction) which build on these components. The second half of the book explains how Semantic Web and NLP technologies can enhance each other, for example via semantic annotation, ontology linking, and population. These chapters also discuss sentiment analysis, a key component in making sense of textual data, and the difficulties of performing NLP on social media, as well as some proposed solutions. The book finishes by investigating some applications of these tools, focusing on semantic search and visualization, modeling user behavior, and an outlook on the future.

  • af Vassilis Christophides
    320,95 kr.

    In recent years, several knowledge bases have been built to enable large-scale knowledge sharing, but also an entity-centric Web search, mixing both structured data and text querying. These knowledge bases offer machine-readable descriptions of real-world entities, e.g., persons, places, published on the Web as Linked Data. However, due to the different information extraction tools and curation policies employed by knowledge bases, multiple, complementary and sometimes conflicting descriptions of the same real-world entities may be provided. Entity resolution aims to identify different descriptions that refer to the same entity appearing either within or across knowledge bases. The objective of this book is to present the new entity resolution challenges stemming from the openness of the Web of data in describing entities by an unbounded number of knowledge bases, the semantic and structural diversity of the descriptions provided across domains even for the same real-world entities, as well as the autonomy of knowledge bases in terms of adopted processes for creating and curating entity descriptions. The scale, diversity, and graph structuring of entity descriptions in the Web of data essentially challenge how two descriptions can be effectively compared for similarity, but also how resolution algorithms can efficiently avoid examining pairwise all descriptions. The book covers a wide spectrum of entity resolution issues at the Web scale, including basic concepts and data structures, main resolution tasks and workflows, as well as state-of-the-art algorithmic techniques and experimental trade-offs.

  • af Carol Jean Godby
    383,95 kr.

    This book describes OCLC's contributions to the transformation of the Internet from a web of documents to a Web of Data. The new Web is a growing `cloud' of interconnected resources that identify the things people want to know about when they approach the Internet with an information need. The linked data architecture has achieved critical mass just as it has become clear that library standards for resource description are nearing obsolescence. Working for the world's largest library cooperative, OCLC researchers have been active participants in the development of next-generation standards for library resource description. By engaging with an international community of library and Web standards experts, they have published some of the most widely used RDF datasets representing library collections and librarianship. This book focuses on the conceptual and technical challenges involved in publishing linked data derived from traditional library metadata. This transformation is a high priority because most searches for information start not in the library, nor even in a Web-accessible library catalog, but elsewhere on the Internet. Modeling data in a form that the broader Web understands will project the value of libraries into the Digital Information Age. The exposition is aimed at librarians, archivists, computer scientists, and other professionals interested in modeling bibliographic descriptions as linked data. It aims to achieve a balanced treatment of theory, technical detail, and practical application.

  • af Jie Tang
    427,95 kr.

    Online social networks have already become a bridge connecting our physical daily life with the (web-based) information space. This connection produces a huge volume of data, not only about the information itself, but also about user behavior. The ubiquity of the social Web and the wealth of social data offer us unprecedented opportunities for studying the interaction patterns among users so as to understand the dynamic mechanisms underlying different networks, something that was previously difficult to explore due to the lack of available data. In this book, we present the architecture of the research for social network mining, from a microscopic point of view. We focus on investigating several key issues in social networks. Specifically, we begin with analytics of social interactions between users. The first kinds of questions we try to answer are: What are the fundamental factors that form the different categories of social ties? How have reciprocal relationships been developed from parasocial relationships? How do connected users further form groups?Another theme addressed in this book is the study of social influence. Social influence occurs when one's opinions, emotions, or behaviors are affected by others, intentionally or unintentionally. Considerable research has been conducted to verify the existence of social influence in various networks. However, few literature studies address how to quantify the strength of influence between users from different aspects. In Chapter 4 and in [138], we have studied how to model and predict user behaviors. One fundamental problem is distinguishing the effects of different social factors such as social influence, homophily, and individual's characteristics. We introduce a probabilistic model to address this problem. Finally, we use an academic social network, ArnetMiner, as an example to demonstrate how we apply the introduced technologies for mining real social networks. In this system, we try to mine knowledge from both the informative (publication) network and the social (collaboration) network, and to understand the interaction mechanisms between the two networks. The system has been in operation since 2006 and has already attracted millions of users from more than 220 countries/regions.

  • af Tope Omitola
    471,95 kr.

    The past ten years have seen a rapid growth in the numbers of people signing up to use Web-based social networks (hundreds of millions of new members are now joining the main services each year) with a large amount of content being shared on these networks (tens of billions of content items are shared each month). With this growth in usage and data being generated, there are many opportunities to discover the knowledge that is often inherent but somewhat hidden in these networks. Web mining techniques are being used to derive this hidden knowledge. In addition, the Semantic Web, including the Linked Data initiative to connect previously disconnected datasets, is making it possible to connect data from across various social spaces through common representations and agreed upon terms for people, content items, etc. In this book, we detail some current research being carried out to semantically represent the implicit and explicit structures on the Social Web, along with the techniques being used to elicit relevant knowledge from these structures, and we present the mechanisms that can be used to intelligently mesh these semantic representations with intelligent knowledge discovery processes. We begin this book with an overview of the origins of the Web, and then show how web intelligence can be derived from a combination of web and Social Web mining. We give an overview of the Social and Semantic Webs, followed by a description of the combined Social Semantic Web (along with some of the possibilities it affords), and the various semantic representation formats for the data created in social networks and on social media sites. Provenance and provenance mining is an important aspect here, especially when data is combined from multiple services. We will expand on the subject of provenance and especially its importance in relation to social data. We will describe extensions to social semantic vocabularies specifically designed for community mining purposes (SIOCM). In the last three chapters, we describe how the combination of web intelligence and social semantic data can be used to derive knowledge from the Social Web, starting at the community level (macro), and then moving through group mining (meso) to user profile mining (micro).

  • af Bin Chen
    338,95 kr.

    The current drug development paradigm---sometimes expressed as, ``One disease, one target, one drug''---is under question, as relatively few drugs have reached the market in the last two decades. Meanwhile, the research focus of drug discovery is being placed on the study of drug action on biological systems as a whole, rather than on individual components of such systems. The vast amount of biological information about genes and proteins and their modulation by small molecules is pushing drug discovery to its next critical steps, involving the integration of chemical knowledge with these biological databases. Systematic integration of these heterogeneous datasets and the provision of algorithms to mine the integrated datasets would enable investigation of the complex mechanisms of drug action; however, traditional approaches face challenges in the representation and integration of multi-scale datasets, and in the discovery of underlying knowledge in the integrated datasets. The Semantic Web, envisioned to enable machines to understand and respond to complex human requests and to retrieve relevant, yet distributed, data, has the potential to trigger system-level chemical-biological innovations. Chem2Bio2RDF is presented as an example of utilizing Semantic Web technologies to enable intelligent analyses for drug discovery.Table of Contents: Introduction / Data Representation and Integration Using RDF / Data Representation and Integration Using OWL / Finding Complex Biological Relationships in PubMed Articles using Bio-LDA / Integrated Semantic Approach for Systems Chemical Biology Knowledge Discovery / Semantic Link Association Prediction / Conclusions / References / Authors' Biographies

  • af Enrico Motta & Mathieu d'Aquin
    257,95 kr.

    The Semantic Web is a young discipline, even if only in comparison to other areas of computer science. Nonetheless, it already exhibits an interesting history and evolution. This book is a reflection on this evolution, aiming to take a snapshot of where we are at this specific point in time, and also showing what might be the focus of future research.This book provides both a conceptual and practical view of this evolution, especially targeted at readers who are starting research in this area and as support material for their supervisors. From a conceptual point of view, it highlights and discusses key questions that have animated the research community: what does it mean to be a Semantic Web system and how is it different from other types of systems, such as knowledge systems or web-based information systems? From a more practical point of view, the core of the book introduces a simple conceptual framework which characterizes Intelligent Semantic Web Systems. We describe this framework, the components it includes, and give pointers to some of the approaches and technologies that might be used to implement them. We also look in detail at concrete systems falling under the category of Intelligent Semantic Web Systems, according to the proposed framework, allowing us to compare them, analyze their strengths and weaknesses, and identify the key fundamental challenges still open for researchers to tackle.

  • af Luc Moreau
    257,95 kr.

    The World Wide Web is now deeply intertwined with our lives, and has become a catalyst for a data deluge, making vast amounts of data available online, at a click of a button. With Web 2.0, users are no longer passive consumers, but active publishers and curators of data. Hence, from science to food manufacturing, from data journalism to personal well-being, from social media to art, there is a strong interest in provenance, a description of what influenced an artifact, a data set, a document, a blog, or any resource on the Web and beyond. Provenance is a crucial piece of information that can help a consumer make a judgment as to whether something can be trusted. Provenance is no longer seen as a curiosity in art circles, but it is regarded as pragmatically, ethically, and methodologically crucial for our day-to-day data manipulation and curation activities on the Web. Following the recent publication of the PROV standard for provenance on the Web, which the two authors actively help shape in the Provenance Working Group at the World Wide Web Consortium, this Synthesis lecture is a hands-on introduction to PROV aimed at Web and linked data professionals. By means of recipes, illustrations, a website at www.provbook.org, and tools, it guides practitioners through a variety of issues related to provenance: how to generate provenance, publish it on the Web, make it discoverable, and how to utilize it. Equipped with this knowledge, practictioners will be in a position to develop novel applications that can bring open-ness, trust, and accountability. Table of Contents: Preface / Acknowledgments / Introduction / A Data Journalism Scenario / The PROV Ontology / Provenance Recipes / Validation, Compliance, Quality, Replay / Provenance Management / Conclusion / Bibliography / Authors' Biographies / Index

  • af Brian Sletten
    242,95 kr.

    The surge of interest in the REpresentational State Transfer (REST) architectural style, the Semantic Web, and Linked Data has resulted in the development of innovative, flexible, and powerful systems that embrace one or more of these compatible technologies. However, most developers, architects, Information Technology managers, and platform owners have only been exposed to the basics of resource-oriented architectures. This book is an attempt to catalog and elucidate several reusable solutions that have been seen in the wild in the now increasingly familiar "e;patterns book"e; style. These are not turn key implementations, but rather, useful strategies for solving certain problems in the development of modern, resource-oriented systems, both on the public Web and within an organization's firewalls.

  • af Elena Simperl
    318,95 kr.

    While many Web 2.0-inspired approaches to semantic content authoring do acknowledge motivation and incentives as the main drivers of user involvement, the amount of useful human contributions actually available will always remain a scarce resource. Complementarily, there are aspects of semantic content authoring in which automatic techniques have proven to perform reliably, and the added value of human (and collective) intelligence is often a question of cost and timing. The challenge that this book attempts to tackle is how these two approaches (machine- and human-driven computation) could be combined in order to improve the cost-performance ratio of creating, managing, and meaningfully using semantic content. To do so, we need to first understand how theories and practices from social sciences and economics about user behavior and incentives could be applied to semantic content authoring. We will introduce a methodology to help software designers to embed incentives-minded functionalities into semantic applications, as well as best practices and guidelines. We will present several examples of such applications, addressing tasks such as ontology management, media annotation, and information extraction, which have been built with these considerations in mind. These examples illustrate key design issues of incentivized Semantic Web applications that might have a significant effect on the success and sustainable development of the applications: the suitability of the task and knowledge domain to the intended audience, and the mechanisms set up to ensure high-quality contributions, and extensive user involvement. Table of Contents: Semantic Data Management: A Human-driven Process / Fundamentals of Motivation and Incentives / Case Study: Motivating Employees to Annotate Content / Case Study: Building a Community of Practice Around Web Service Management and Annotation / Case Study: Games with a Purpose for Semantic Content Creation / Conclusions

  • af Eero Hyvönen
    320,95 kr.

    Cultural Heritage (CH) data is syntactically and semantically heterogeneous, multilingual, semantically rich, and highly interlinked. It is produced in a distributed, open fashion by museums, libraries, archives, and media organizations, as well as individual persons. Managing publication of such richness and variety of content on the Web, and at the same time supporting distributed, interoperable content creation processes, poses challenges where traditional publication approaches need to be re-thought. Application of the principles and technologies of Linked Data and the Semantic Web is a new, promising approach to address these problems. This development is leading to the creation of large national and international CH portals, such as Europeana, to large open data repositories, such as the Linked Open Data Cloud, and massive publications of linked library data in the U.S., Europe, and Asia. Cultural Heritage has become one of the most successful application domains of Linked Data and Semantic Web technologies. This book gives an overview on why, when, and how Linked (Open) Data and Semantic Web technologies can be employed in practice in publishing CH collections and other content on the Web. The text first motivates and presents a general semantic portal model and publishing framework as a solution approach to distributed semantic content creation, based on an ontology infrastructure. On the Semantic Web, such an infrastructure includes shared metadata models, ontologies, and logical reasoning, and is supported by shared ontology and other Web services alleviating the use of the new technology and linked data in legacy cataloging systems. The goal of all this is to provide layman users and researchers with new, more intelligent and usable Web applications that can be utilized by other Web applications, too, via well-defined Application Programming Interfaces (API). At the same time, it is possible to provide publishing organizations with more cost-efficient solutions for content creation and publication. This book is targeted to computer scientists, museum curators, librarians, archivists, and other CH professionals interested in Linked Data and CH applications on the Semantic Web. The text is focused on practice and applications, making it suitable to students, researchers, and practitioners developing Web services and applications of CH, as well as to CH managers willing to understand the technical issues and challenges involved in linked data publication. Table of Contents: Cultural Heritage on the Semantic Web / Portal Model for Collaborative CH Publishing / Requirements for Publishing Linked Data / Metadata Schemas / Domain Vocabularies and Ontologies / Logic Rules for Cultural Heritage / Cultural Content Creation / Semantic Services for Human and Machine Users / Conclusions

  • af Katy Borner
    401,95 kr.

    The world of scholarship is changing rapidly. Increasing demands on scholars, the growing size and complexity of questions and problems to be addressed, and advances in sophistication of data collection, analysis, and presentation require new approaches to scholarship. A ubiquitous, open information infrastructure for scholarship, consisting of linked open data, open-source software tools, and a community committed to sustainability are emerging to meet the needs of scholars today. This book provides an introduction to VIVO, http://vivoweb.org/, a tool for representing information about research and researchers -- their scholarly works, research interests, and organizational relationships. VIVO provides an expressive ontology, tools for managing the ontology, and a platform for using the ontology to create and manage linked open data for scholarship and discovery. Begun as a project at Cornell and further developed by an NIH funded consortium, VIVO is now being established as an open-source project with community participation from around the world. By the end of 2012, over 20 countries and 50 organizations will provide information in VIVO format on more than one million researchers and research staff, including publications, research resources, events, funding, courses taught, and other scholarly activity. The rapid growth of VIVO and of VIVO-compatible data sources speaks to the fundamental need to transform scholarship for the 21st century. Table of Contents: Scholarly Networking Needs and Desires / The VIVO Ontology / Implementing VIVO and Filling It with Life / Case Study: University of Colorado at Boulder / Case Study: Weill Cornell Medical College / Extending VIVO / Analyzing and Visualizing VIVO Data / The Future of VIVO: Growing the Community

  • af Tom Heath
    320,95 kr.

    The World Wide Web has enabled the creation of a global information space comprising linked documents. As the Web becomes ever more enmeshed with our daily lives, there is a growing desire for direct access to raw data not currently available on the Web or bound up in hypertext documents. Linked Data provides a publishing paradigm in which not only documents, but also data, can be a first class citizen of the Web, thereby enabling the extension of the Web with a global data space based on open standards - the Web of Data. In this Synthesis lecture we provide readers with a detailed technical introduction to Linked Data. We begin by outlining the basic principles of Linked Data, including coverage of relevant aspects of Web architecture. The remainder of the text is based around two main themes - the publication and consumption of Linked Data. Drawing on a practical Linked Data scenario, we provide guidance and best practices on: architectural approaches to publishing Linked Data; choosing URIs and vocabularies to identify and describe resources; deciding what data to return in a description of a resource on the Web; methods and frameworks for automated linking of data sets; and testing and debugging approaches for Linked Data deployments. We give an overview of existing Linked Data applications and then examine the architectures that are used to consume Linked Data from the Web, alongside existing tools and frameworks that enable these. Readers can expect to gain a rich technical understanding of Linked Data fundamentals, as the basis for application development, research or further study. Table of Contents: List of Figures / Introduction / Principles of Linked Data / The Web of Data / Linked Data Design Considerations / Recipes for Publishing Linked Data / Consuming Linked Data / Summary and Outlook

  • af Aidan Hogan
    718,95 kr.

    This book provides a comprehensive and accessible introduction to knowledge graphs, which have recently garnered notable attention from both industry and academia. Knowledge graphs are founded on the principle of applying a graph-based abstraction to data, and are now broadly deployed in scenarios that require integrating and extracting value from multiple, diverse sources of data at large scale. The book defines knowledge graphs and provides a high-level overview of how they are used. It presents and contrasts popular graph models that are commonly used to represent data as graphs, and the languages by which they can be queried before describing how the resulting data graph can be enhanced with notions of schema, identity, and context. The book discusses how ontologies and rules can be used to encode knowledge as well as how inductive techniques-based on statistics, graph analytics, machine learning, etc.-can be used to encode and extract knowledge. It covers techniques for the creation, enrichment, assessment, and refinement of knowledge graphs and surveys recent open and enterprise knowledge graphs and the industries or applications within which they have been most widely adopted. The book closes by discussing the current limitations and future directions along which knowledge graphs are likely to evolve. This book is aimed at students, researchers, and practitioners who wish to learn more about knowledge graphs and how they facilitate extracting value from diverse data at large scale. To make the book accessible for newcomers, running examples and graphical notation are used throughout. Formal definitions and extensive references are also provided for those who opt to delve more deeply into specific topics.

  • af Albert Meroño-Peñuela
    654,95 kr.

    This book describes a set of methods, architectures, and tools to extend the data pipeline at the disposal of developers when they need to publish and consume data from Knowledge Graphs (graph-structured knowledge bases that describe the entities and relations within a domain in a semantically meaningful way) using SPARQL, Web APIs, and JSON. To do so, it focuses on the paradigmatic cases of two middleware software packages, grlc and SPARQL Transformer, which automatically build and run SPARQL-based REST APIs and allow the specification of JSON schema results, respectively. The authors highlight the underlying principles behind these technologies-query management, declarative languages, new levels of indirection, abstraction layers, and separation of concerns-, explain their practical usage, and describe their penetration in research projects and industry. The book, therefore, serves a double purpose: to provide a sound and technical description of tools and methods at the disposal of publishers and developers to quickly deploy and consume Web Data APIs on top of Knowledge Graphs; and to propose an extensible and heterogeneous Knowledge Graph access infrastructure that accommodates a growing ecosystem of querying paradigms.

  • af Juan Sequeda
    708,95 kr.

    This book is a guide to designing and building knowledge graphs from enterprise relational databases in practice.\ It presents a principled framework centered on mapping patterns to connect relational databases with knowledge graphs, the roles within an organization responsible for the knowledge graph, and the process that combines data and people. The content of this book is applicable to knowledge graphs being built either with property graph or RDF graph technologies. Knowledge graphs are fulfilling the vision of creating intelligent systems that integrate knowledge and data at large scale. Tech giants have adopted knowledge graphs for the foundation of next-generation enterprise data and metadata management, search, recommendation, analytics, intelligent agents, and more. We are now observing an increasing number of enterprises that seek to adopt knowledge graphs to develop a competitive edge. In order for enterprises to design and build knowledge graphs, they need to understand the critical data stored in relational databases. How can enterprises successfully adopt knowledge graphs to integrate data and knowledge, without boiling the ocean? This book provides the answers.

  • af Michael Uschold
    471,95 - 622,95 kr.

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.