Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Sustainability and Toxicity of Building Materials: Manufacture, Use and Disposal Stages provides a review of toxicity impacts from building materials, including the consideration of the toxicity in the extraction and manufacture of the materials and eventual dismantling and disposal. This book also offers the potential to stimulate future developments in this area, both in terms of knowledge-building and methods for future research. With the increasing emphasis on sustainable construction, it has become important to better understand the impacts of common materials. Civil and structural engineers, postgraduates, researchers as well as architects will find this book to be useful in selecting sustainable building materials.While many building and furnishing materials are safe to use, in recent decades, some have had to be redesigned due to recognition that they contained problem chemicals like formaldehyde. Unfortunately, there is still limited understanding of the toxic impacts of many synthetic chemicals which means that the risks in this area are not well recognized. With increasing interest in using limited resources more sustainably, definitions of what is sustainable should be expanded to move from the focus on energy and carbon impacts to also include more explicit consideration of toxicity impacts.
Carbon Dioxide Sequestration in Cementitious Construction Materials, Second Edition, offers an updated and comprehensive overview of carbon dioxide storage-based cementitious construction materials, presenting a promising avenue for substantial eco-efficiency and economic advantages within the construction sector. The first part examines different methods and mechanisms for carbon dioxide sequestration in cementitious materials, including in steel slag, in magnesium-based binders and in autoclaved cement mixtures. Part two explores carbon capture in industrial waste and recycled materials, considering cost, energy, and aqueous carbonation kinetics. The final part is entirely new and investigates biological approaches to carbon dioxide sequestration in construction materials, involving bacteria, bamboo biochar, wood bio-concretes, and bio-inspired materials
Bio-Based and Bio-Inspired Pavement Construction Materials explores the role of materials in carbon management, performance enhancement, and supply chain management in pavement construction. It presents various production techniques, experimental characterization methods, applications, numerical modeling, and simulation approaches for bio-based and bio-inspired pavement construction materials. The book demonstrates how bio-based and bio-inspired materials can be used in pavements to solve problems related to sustainability while simultaneously enhancing the mechanical properties of materials. Supply chain management, life-cycle analysis, and environmental assessment of using these materials are all covered in this volume as well.
High-Volume Mineral Admixtures in Cementitious Binders: Towards Carbon-Neutral Construction delivers an overview of the broad applications of high-volume supplementary cementitious materials (SCMs) in cementitious binders, addressing the most promising ways to use them to reduce carbon emissions in the construction and building industry. This book focuses on the applications and scientific challenges of high-volume SCMs blends, elaborating on the possibilities as well as offering original perspectives on using different kinds of blended cements in the manufacturing process. Emphasis is placed on activity estimation and quality assessment, the properties of high-volume SCM-blends at both the fresh and hardened stages, self-hydraulic properties, and potential use as the sole binder, as well as associated environmental impacts and carbon footprint reduction.
The Path to Green Concrete will enlighten the scientific community on recent developments in this field. Within this volume, world-renowned experts summarize recent research findings covering key topics such as: alkali-activated materials using aluminosilicate waste precursors; use of novel cost-effective and eco-efficient supplementary cementitious materials; state of the art characterization techniques and assessment methodologies; advances on the use of biomass ashes, steel slags and waste glass; the role of carbon capture in the production of concrete and mortar; development of eco-efficient composites for specialized applications; recycling of the fine fraction of construction and demolition wastes; and sustainable self-healing concrete. This book will be a valuable reference resource for academic and industrial researchers, civil and structural engineers, manufacturers, and other construction professionals working in the development of sustainable construction materials.
Besides their notable historical and cultural significance, heritage buildings crucially contribute to the economy of those countries that rely heavily on the tourism industry. Investigation and monitoring of the origins of deterioration and damage are therefore key to the preservation of architectural heritage. Diagnosis of Heritage Buildings by Non-Destructive Techniques offers an up-to-date overview of state-of-the-art knowledge by collating specialized studies written by an international group of experts in the field, while also examining the value of these non-intrusive methods through a number of real-life case studies which prove NDT techniques’ global relevance. The volume is an invaluable reference resource for students, researchers, and practitioners alike.
Green Materials in Civil Engineering provides a comprehensive resource for practitioners to learn more about the utilization of these materials in civil engineering, as well as their practical applications. Novel green materials such as fly ash, slag, fiber-reinforced concrete and soil, smart materials, biological materials, and waste materials such as mineral wastes, building and demolition waste, recycled asphalt, coal gangue and industrial by-products are discussed in detail. Emphasis is placed on understanding the qualities, selection criteria, products and applications, durability, life cycle, and recyclability of these materials. The book will be a valuable reference resource for academic and industrial researchers, materials scientists, and civil engineers who are working in the development of construction materials, utilization of waste, and other fine by-products in the production of concrete and other construction materials.
Eco-efficient Repair and Rehabilitation of Concrete Infrastructures, Second Edition provides an updated, state-of-the-art review of the latest advances in this important research field. The first section is brought fully up-to-date and focuses on deterioration assessment methods. The second section contains brand new chapters on innovative concrete repair and rehabilitation materials, including fly ash-based alkali-activated repair materials for concrete exposed to aggressive environments, retrofitting of concrete structures with biomaterials, and the assessment of concrete after repair operations and durability of concrete repair. The final section has been revised to include new chapters on climate change’s influence and life cycle assessment (LCA). These chapters include deterioration of concrete infrastructure due to climate change, influence of climate change on bridge deterioration, probabilistic modeling of chloride diffusion in repaired reinforced concrete structures, and LCA of concrete repaired with recycled aggregates.
Understanding the Tensile Properties of Concrete: In Statistics and Dynamics, Second Edition summarizes recent research on this important subject. After an introduction to concrete, the book is divided into two distinct parts. Part One starts with a summary chapter on the most important parameters that affect the tensile response of concrete. Chapters show how multiscale modeling is used to relate concrete composition to tensile properties. Part Two focuses on dynamic response and starts with an introduction to the different regimes of dynamic loading, ranging from low frequency loading by wind or earthquakes to extreme dynamic conditions due to explosions and ballistic impacts. Following chapters review dynamic testing techniques and devices that deal with the various regimes of dynamic loading. Later chapters highlight the dynamic behavior of concrete from different viewpoints, and the book ends with a chapter on practical examples of how detailed knowledge on tensile properties is used by engineers in structural applications. Drawing on the work of some of the leading experts in the field, the book is fully updated and will be a valuable reference for civil and structural engineers as well as those researching this important material.
Geotechnical Interpretations in Field Practice: An Introduction provides the latest on field test results and theoretical knowledge, interpretation and engineering judgement and how this data is essential for proper planning and execution of ground investigations. Maximum subsurface information can be extracted with lesser budget if proper interpretation is made. In other words, no amount of site investigation is adequate without proper interpretation and application of engineering judgement. With this in consideration in mind, this book presents a special focus on the importance of interpretation and engineering judgment in geotechnical projects.
Machine Learning Applications in Industrial Solid Ash begins with fundamentals in solid ash, covering the status of solid ash generation and management. The book moves on to foundational knowledge on ML in solid ash management, which provides a brief introduction of ML for solid ash applications. The reference then goes on to discuss ML approaches currently used to address problems in solid ash management and recycling, including solid ash generation, clustering analysis, origin identification, reactivity prediction, leaching potential modelling and metal recovery evaluation, etc. Finally, potential future trends and challenges in the field are discussed. Offering the ability to process large or complex datasets, machine learning (ML) holds huge potential to reshape the whole status for solid ash management and recycling. This book is the first published book about ML in solid ash management and recycling. It highlights fundamental knowledge and recent advances in this topic, offering readers new insight into how these tools can be utilized to enhance their own work.
Impressive engineering advances have occurred that can curb the impact of seismic events on residential properties, commercial edifices, architectural heritage, and infrastructure. Written by a university professor with decades of on-site experience, Construction of Earthquake-Resistant Concrete and Steel Structures offers up-to-date information and technical competence with the aim of supporting an understanding of fundamental concepts for concrete and steel structures, shell elements, and reinforcement detailing. The volume is an invaluable resource for students, researchers, and early-career practicing professionals to also learn about construction issues and how to solve practical challenges while ensuring that building codes (ACI, AISC, ANSI, ASCE, RCSC, and many more) and design standards' requirements are upheld.
Interpretable Machine Learning for the Analysis, Design, Assessment, and Informed Decision Making for Civil Infrastructure highlights the growing trend of fostering machine learning to realize contemporary, smart, and safe infrastructure. This volume delves into the latest advancements in machine learning and artificial intelligence, providing readers with practical insights into their applications in the analysis, design, and assessment of civil infrastructure. From the innovative use of Generative Adversarial Networks in the design of shear wall structures to the application of deep learning for damage inspection of concrete structures, each chapter offers a unique perspective on the integration of cutting-edge technology in the field. Explore the potential of AI-driven fire safety design for smart buildings, the challenges and promises of large-scale evacuation modeling, and the use of machine learning classifiers for evaluating liquefaction potential. The book also features an in-depth discussion on explainable machine learning models for predicting the axial capacity of strengthened CFST columns and the development of spalling detection techniques using deep learning. Whether you are a civil engineer, researcher, or industry professional, this book is an invaluable resource that will equip you with the knowledge and tools to revolutionize civil infrastructure design and management. This book presents innovative research results supplemented with case studies from leading researchers in this dynamic and emerging field to be used as benchmarks to carry out future experiments and/or facilitate the development of future experiments and advanced numerical models. The book is delivered as a guide for a wide audience, including senior postgraduate students, academic and industrial researchers, materials scientists, and practicing engineers working in civil, environmental, and mechanical engineering.
Machine Learning Applications in Civil Engineering discusses machine learning and deep learning models for different civil engineering applications. These models work for stochastic methods wherein internal processing is done using randomized prototypes. The book explains various machine learning model designs that will assist researchers to design multi domain systems with maximum efficiency. It introduces Machine Learning and its applications to different Civil Engineering tasks, including Basic Machine Learning Models for data pre-processing, models for data representation, classification models for Civil Engineering Applications, Bioinspired Computing models for Civil Engineering, and their case studies. Using this book, civil engineering students and researchers can deep dive into Machine Learning, and identify various solutions to practical Civil Engineering tasks.
Data Analysis in Pavement Engineering: Methodologies and Applications introduces the theories and methods as well as definitions, principles, and algorithms of data analysis applied in pavement and transportation infrastructure analysis, tests, maintenance, and operation. This book provides case studies that demonstrate how these methods can be applied to solve problems in pavement engineering. Through these real-life examples, readers can gain a better understanding of how to utilize these data analysis techniques effectively. Data Analysis in Pavement Engineering: Methodologies and Applications serves as a reference for engineers or a textbook for graduate and senior undergraduate students in disciplines related to transportation infrastructure.
Advance Upcycling of By-products in Binder and Binder-Based Materials focuses on research trends in binder and binder-based materials containing by-products. The book covers the properties of these materials, both physical and mechanical, and their durability, as well as their inner structure, both at the micro and nano-scale. The reuse of by-products within binder systems is also discussed as well as innovative approaches and advanced solutions for making cost-, ecology-, and environmental-friendly hydraulic binder and binder-based materials from the upcycling of by-products. The book also looks at additive manufacturing and explains the effects of by-products on the properties of binder and binder-based materials. As a consequence of the popularity of additive manufacturing, various by-product materials, in terms of constructional application, are also identified. These include latent hydraulic supplements, activators of transport properties, and increase in inner strength and durability. The book will be an essential reference resource for academic and industrial researchers, materials scientists and civil engineers and all those who are working in the development of 'greener' construction materials and utilization of waste and other fine by-products in the production of environmentally-friendly concrete.
Circular Design for Zero Emission Architecture and Building Practice: It is the Green Way or the Highway presents the main concepts of circular architecture and building design, focusing on emerging trends in zero-emission buildings, particularly zero- and minus- carbon practice. The book is structured around practical design solutions, including research-based passive solutions for extreme climates. It discusses passive and low carbon cooling and heating and natural ventilation, lifecycle assessment and life-cost analysis. The book presents examples and case studies from innovative low-tech to high-tech approaches, covering a wide spectrum of climate zones to show lessons learned and proof of concept. Vulnerable groups of people such as climate refugees are discussed, alongside how vernacular architecture can help introduce practical methods into low-carbon building practices. This book presents theoretical and practical coverage of circular design for zero emission architecture and building in relation to the global challenges of climate change and extreme weather.
Materials Selection for Sustainability in the Built Environment: Environmental, Social and Economic Aspects presents the current state-of-the-art when it comes to the decision-making process for choosing construction materials to deliver sustainable construction projects. Aspects covered include the science of enhanced decision-making via operational research and machine learning techniques and how this can be implemented in various disciplines such as architecture, engineering and construction. To this end, the book discusses environmental, economic and social aspects in assessing construction materials and presents different tools and methods that can benefit and facilitate this process. Finally, the book reviews previous publications on construction material selection and presents essential discussions on the role professionals, researchers, contractors and governments play in making more sustainable decisions on the built environment.
Artificial Intelligence-Based Design of Reinforced Concrete Structures: Artificial Neural Networks for Engineering Applications is an essential reference resource for readers who want to learn how to perform artificial intelligence-based structural design. The book describes, in detail, the main concepts of ANNs and their application and use in civil and architectural engineering. It shows how neural networks can be established and implemented depending on the nature of a broad range of diverse engineering problems. The design examples include both civil and architectural engineering solutions, for both structural engineering and concrete structures. Those who have not had the opportunity to study or implement neural networks before will find this book very easy to follow. It covers the basic network theory and how to formulate and apply neural networks to real-world problems. Plenty of examples based on real engineering problems and solutions are included to help readers better understand important concepts.
Geopolymer Concrete Structures with Steel and FRP Reinforcements: Analysis and Design focuses on structural behavior, including the aspects of compression, bending strength and combined action of GPC members, with the book's content based on published studies over the last two decades. Geopolymer concrete (GPC) structural members reinforced with FRP reinforcement have some advantages in resisting forces compared to conventional concrete or steel tubular members. Among the most important are the high strength and bending stiffness, fire and impact performance and favorable, construction ability and durability. To this end, there are no significant applications of these new structural elements worldwide, partly due to the lack of the understanding of their behavior and insufficient design provisions in different design manuals. This book, therefore, seeks to highlight their characteristics and future potential.
Concrete-Filled Double-Skin Steel Tubular Columns: Behavior and Design provides a thorough review of the recent advances on the behaviour and design of concrete-filled double-skin steel tubular (CFDST) columns. Drawing on their extensive knowledge and research, the authors cover topics such as different CFDST columns under axial compression, innovative techniques including the use of rubberised concrete, columns with different cross-sections, and steel material envelops and failure modes. This book is an overview of research carried out by this highly experienced and leading research group with specialist knowledge in the topic. It is an invaluable resource for researchers, graduates and post-graduate civil engineers and civil engineering designers.
Adapting the Built Environment for Climate Change: Design Principles for Climate Emergencies analyzes several scenarios and proposes various adaptation strategies for climate emergencies (heat waves, wildfires, floods, and storms). Divided into three themes, the book offers an organized vision of a complex and multi-factor challenge. It covers climatic resilience and building refurbishment, implications for service life prediction and maintainability, and climate adaptation in the maintenance and management of buildings. Sections cover infrastructure materials, climate emergency adaptation and building adaptation to heat waves, wildfires, floods and storms. The book will be an essential reference resource for civil and structural engineers, architects, planners, designers and other professionals who have an interest in the adaptation of the built environment against climate change.
Alkali-activated materials, including geopolymers, are being studied at an increasing pace for various high-value applications. The main drivers for this emerging interest include the low-energy, low-cost, and readily up-scalable manufacturing process; the possibility to utilize industrial wastes and by-products as raw materials; and beneficial material properties comparable to conventional materials. It has already been verified that alkali-activated materials are very versatile in environmental technology applications for pollution control. The current research in the field focuses on advanced manufacturing methods, material properties, and applications, for example, additive manufacturing, modification of surface chemistry, CO2 capture, and green catalysis. Alkali-Activated Materials in Environmental Technology Applications discusses what novel possibilities alkali-activated materials provide in comparison to conventional materials (such as high-temperature ceramics, synthetic zeolites, or organic polymers). The specific environmental applications that are covered include water and wastewater treatment, air pollution control, stabilization/solidification of hazardous wastes, and catalysts in chemical processes. In addition, preparation methods, material properties, and the chemistry of alkali-activated materials are revisited from the viewpoint of environmental technology applications. This book also discusses how well alkali-activated materials fit under the concepts of green chemistry and circular economy and how the life cycle analysis of these materials compares to conventional materials.
Essential reading for researchers, practitioners, and engineers, this book covers not only all the important aspects in the field of corrosion of steel reinforced concrete but also discusses new topics and future trends. Theoretical concepts of corrosion of steel in concrete structures, the variety of reinforcing materials and concrete, including stainless steel and galvanized steel, measurements and evaluations, such as electrochemical techniques and acoustic emission, protection and maintenance methods, and modelling, latest developments, and future trends in the field are discussed.
Seismic Evaluation, Damage, and Mitigation in Structures covers recent developments in the area of seismic performance assessment of structures. Earthquakes are one of the main natural hazards that could directly cause damages to or collapse of structures, resulting in significant economic and human life losses. In the event of an earthquake where many buildings and infrastructure components are not able to function afterward, or if extensive repair and associated disruption are needed, it can be very costly and take a long time to resolve. Divided into three parts, the book reviews and discusses earthquake-induced damage evaluation in structures, repair of structural and non-structural components, and seismic damage mitigation strategies. With contributions from the leading experts in the field, this book is for earthquake and structural engineers and PhD students studying civil engineering and for those who understand that design and damage mitigation of structures that have limited structural or non-structural damage in a seismic event can be easy to inspect and repair for quick reoccupation.
Corrosion of Reinforced Concrete Structures: Mechanism, Monitoring and Control presents research, theory and practice on the control of corrosion in reinforced concrete structures. The title is a comprehensive guide to corrosion, its monitoring and prevention in reinforced concrete structures. It considers the essential mechanisms of corrosion, provides key monitoring techniques, describes how to effectively control corrosion, and how to establish a cyber-physical protection system. As corrosion is one of the most significant factors in the deterioration of civil engineering structures globally, and with concrete the world's most utilized manufactured material, this book highlights strategies to keep corrosion from becoming a serious threat.
The Science and Technology of Cement and other Hydraulic Binders covers the design of Portland Cement composition using the ideas and formulae of earlier scientists, including the calculation of proportions of different cement phases formed during processing. Other chapters cover cement manufacture by dry, semi-dry or wet processes using rotary and shaft kilns. Particular attention is given to the physical changes that occur in the raw mix when affected by chemical processes. The chemistry of clinker formation which is concerned chiefly with high temperature reactions in the solid-state phase or reactions in the presence of the liquid phase is also discussed. Users will find the latest information on the storage of cement, its packing and handling, hydration and setting, Gypsum, different mineral additions, and advances in special and newer cements, including blended cements, Portland slag cement, Pozzolanic cements, high alumina cements, high-strength cement-based materials, fiber-reinforced cement, non-Portland cements and lime.
Recycled Concrete: Technologies and Performance presents the latest technologies that can be applied to produce high and consistent quality recycled aggregate for use in structural concrete, and in alternative binders like Geopolymer and other types of concrete. The book discusses the lifecycle assessment of implementing sustainable construction technologies and evaluates the environmental impacts of recycled concrete in construction applications. It covers their use in the production of durable recycled concrete, their reduced environmental impact, quality improvement techniques, and more, making it valuable and relevant for civil and structural engineers, recycle industry managers, ready-mix and precast concrete producers and researchers.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.