Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book provides an introduction to the cost modeling for electronic systems that is suitable for advanced undergraduate and graduate students in electrical, mechanical and industrial engineering, and professionals involved with electronics technology development and management. This book melds elements of traditional engineering economics with manufacturing process and life-cycle cost management concepts to form a practical foundation for predicting the cost of electronic products and systems. Various manufacturing cost analysis methods are addressed including: process-flow, parametric, cost of ownership, and activity based costing. The effects of learning curves, data uncertainty, test and rework processes, and defects are considered. Aspects of system sustainment and life-cycle cost modeling including reliability (warranty, burn-in), maintenance (sparing and availability), and obsolescence are treated. Finally, total cost of ownership of systems, return on investment, cost-benefit analysis, and real options analysis are addressed.
To celebrate Professor Avi Bar-Cohen's 65th birthday, this unique volume is a collection of recent advances and emerging research from various luminaries and experts in the field. Cutting-edge technologies and research related to thermal management and thermal packaging of micro- and nanoelectronics are covered, including enhanced heat transfer, heat sinks, liquid cooling, phase change materials, synthetic jets, computational heat transfer, electronics reliability, 3D packaging, thermoelectrics, data centers, and solid state lighting.This book can be used by researchers and practitioners of thermal engineering to gain insight into next generation thermal packaging solutions. It is an excellent reference text for graduate-level courses in heat transfer and electronics packaging.
MEMS sensors and actuators are enabling components for smartphones, AR/VR, and wearable electronics. MEMS packaging is recognized as one of the most critical activities to design and manufacture reliable MEMS. A unique challenge to MEMS packaging is how to protect moving MEMS devices during manufacturing and operation. With the introduction of wafer level capping and encapsulation processes, this barrier is removed successfully. In addition, MEMS devices should be integrated with their electronic chips with the smallest footprint possible. As a result, 3D packaging is applied to connect the devices vertically for the most effective integration. Such 3D packaging also paves the way for further heterogenous integration of MEMS devices, electronics, and other functional devices.This book consists of chapters written by leaders developing products in a MEMS industrial setting and faculty members conducting research in an academic setting. After an introduction chapter, the practical issues are covered: through-silicon vias (TSVs), vertical interconnects, wafer level packaging, motion sensor-to-CMOS bonding, and use of printed circuit board technology to fabricate MEMS. These chapters are written by leaders developing MEMS products. Then, fundamental issues are discussed, topics including encapsulation of MEMS, heterogenous integration, microfluidics, solder bonding, localized sealing, microsprings, and reliability.
This book provides a comprehensive overview of important aspects of solder materials including solderability and soldering reaction, physical metallurgy, mechanical properties, electromigration, and reliability of solder joint. The scope of this book covers mainly, but not limited to, the important research achievements of all the subjects having been disclosed and discussed in the literatures. It is a very informative book for those who are interested in learning the material properties of solders, carrying out fundamental research, and in carrying out practical applications. This book is an important resource for the various important subjects relating to solder materials.
This unique compendium emphasizes key factors driving the performance of thermoelectric energy conversion systems. Important design parameters such as heat transfer at the boundaries of the system, material properties, and form factors are carefully analyzed and optimized for performance including the cost-performance trade-off. Numbers of examples are provided on the applications of thermoelectric technologies, e.g., power generation, cooling of electronic components, and waste heat recovery in wearable devices.This must-have volume also includes an interactive modeling software package developed on the nanoHUB (https://nanohub.org/) platform. Professionals, researchers, academics, undergraduate and graduate students will be able to study the impact of material properties and key design parameters on the overall thermoelectric system performance as well as the large scale implementation in the society.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.