Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This contributed volume is dedicated towards the progress achieved within the last years in all areas of Cell Culture Engineering and Technology. It comprises contributions of active researchers in the field of cell culture development for the production of recombinant proteins, cell line development, cell therapy and gene therapy, with consideration of media development, process scale-up, reactor design, monitoring and control and model-assisted strategies for process design. The knowledge and expertise of the authors cover disciplines like cell biology, engineering, biotechnology and biomedical sciences. This book is conceived for graduate students, postdoctoral fellows and researchers interested in the latest developments in Cell Engineering.
This book illustrates the significance of various optical spectroscopy and microscopy techniques, including absorption spectroscopy, fluorescence spectroscopy, infrared spectroscopy, and Raman spectroscopy for deciphering the nature of biological molecules. The content of this book chiefly focuses on (1) the principle, theory, and instrumentation used in different optical spectroscopy techniques, and (2) the application of these techniques in exploring the nature of different biomolecules (e.g., proteins, nucleic acids, enzymes, and carbohydrates). It emphasizes the structural, conformational and dynamic, and kinetic including the changes in biomolecules under a range of conditions. In closing, the book summarizes recent advances in the field of optical spectroscopic and microscopic techniques.
This book presents commonly applied characterization techniques in material science, their brief history and origins, mechanism of operation, advantages and disadvantages, their biosensing applications, and troubleshooting for each technique, while addressing the challenges researchers face when working with these techniques. The book dedicates its focus to identifying physicochemical and electrochemical nature of materials including analyses of morphology, mass spectrometry, and topography, as well as the characterization of elemental, structural, thermal, wettability, electrochemical, and chromatography properties. Additionally, the main features and benefits of using coupled characterization techniques are discussed in this book.
This volume covers current and emerging techniques for studying single-domain antibodies (sdAbs). Chapters guide readers through the biology and immunology of sdAbs in camelids and sharks, isolation of sdAbs, protein engineering approaches to optimize the solubility, stability, valency and antigen binding affinity of sdAbs, and specialized applications of sdAbs. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Single-Domain Antibodies: Methods and Protocols aims to be a useful, practical guide to help researchers further their studies in this field.
This volume provides an up-to-date collection of protocols describing some of the key methods to investigate the integrated stress response (ISR), a vital evolutionarily conserved mechanism that enables eukaryotic cells to adapt to stress conditions and alter their gene expression programs. The content of the book is split between techniques to analyze mRNA translation regulation and methods to analyze interaction networks and ribonucleoprotein (RNP) granules. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, The Integrated Stress Response: Methods and Protocols serves as an ideal guide to help accelerate research into the complex and fascinating biology of the ISR.
This new collection features the most up-to-date essential protocols that are currently being used to study the immune synapse. Beginning with methods for making biophysical measurements, the volume continues by covering the cell biology of synapses, methods for advanced substrate engineering, mechanobiology topics, new technologies to describe and manipulate synaptic components, as well as methods related to sites of action and immunotherapy. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and fully updated, The Immune Synapse: Methods and Protocols, Second Edition serves as an ideal practical guide for researchers working in this dynamic field. Chapters 5, 11,18, 27, 30, and 32 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
En este libro se exponen con gran detalle diez experimentos que supusieron un cambio radical en las teorías físicas y científicas, partiendo de lo ocurrido a finales del siglo XIX y finalizando a finales del siglo XX.Estos experimentos se describen primero centrándose en el problema que provocó la prueba de ese mismo aparato experimental, luego describiendo la solución encontrada y finalmente exponiendo las consecuencias.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.