Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book focuses on energy metabolism and brain functions related to Cortical Spreading Depression of Leao (CSD), an important issue in brain pathophysiology. The first part of the book offers a comprehensive overview of the history and early research on CSD, and then discusses the recent advances in the technology used to map and monitor brain mitochondrial NADH redox state and other physiological functions during CSD. The chapters explore the connection between CSD and mitochondrial function under hypoxia, Ischemia and various drugs treatment, and provide a resource to scientists researching the development of CSD during various brain pathophysiological conditions. This book is essential to scientists and students working in the field of bioenergetics of the brain and various organs and tissues in the body. The use of this technology is also crucial and applicable in the neuroscience field.
This book provides a selection of recent developments in scanning ion conductance microscopy (SICM) technology and applications. In recent years, SICM has been applied in an ever-increasing number of areas in the bioanalytical sciences. SICM is based on an electrolyte-filled nanopipette with a nanometer-scale opening, over which an electric potential is applied. The induced ion current is measured, which allows to directly or indirectly quantify various physical quantities such as pipette-sample distance, ion concentration, sample elastic modulus among many others. This makes SICM well suited for applications in electrolytes - most prominently for the study of live cells.This book starts with a historic overview starting from the days of the invention of SICM by Paul Hansma at the University of California at Santa Barbara in 1989. SICM is a member of the family of scanning probe microscopies. It is related to another prominent member of the family, atomic force microscopy (AFM), which has found application in almost any field of nanoscale science. The advantages and disadvantages of SICM over AFM are also outlined. One of the most effective and break-through applications of SICM nanopipettes is in electrochemistry. The different routes and applications for doing electrochemistry using nanopipettes are also discussed. In addition the book highlights the ability of SICM for surface positioning with nanometer precision to open up new vistas in patch clamp measurements subcellular structures. Finally the book presents one research area where SICM has been making a lot of contributions, cardiac research and the endeavors to combine SICM with super-resolution optical microscopy for highest-resolution joint topography and functional imaging.
This contributed volume focuses on cardiovascular diseases (CVDs), and explores the ways in which signaling mechanisms at the biochemical, molecular, and cellular levels in the blood vessels (vascular) and heart contribute to the underlying causes of development and progression of the CVDs. This volume covers unique topics such as oxidant signaling in vascular and heart diseases and health, cytoskeletal signaling in vascular health and disease, phospholipase signaling in CVDs, lipid signaling in vascular and myocardial health and diseases, and drug discovery in cellular signaling for cardiovascular diseases.This book assembles the most important discoveries made by leaders on the cellular signaling mechanisms operating behind the development and progression of life-threatening CVDs. It is an extremely useful resource for the investigators in the field of CVDs, and opens the discussion for further discovery of efficient management and effective treatment of the CVDs.
This interdisciplinary book covers the fundamentals of optical whispering gallery mode (WGM) microcavities, light¿matter interaction, and biomolecular structure with a focus on applications in biosensing. Novel biosensors based on the hybridization of WGM microcavities and localized surface plasmon resonances (LSPRs) in metal nanoparticles have emerged as the most sensitive microsystem biodetection technology that boasts single molecule detection capability without the need for amplification and labeling of the analyte. The book provides an ample survey of the physical mechanisms of WGMs and LSPRs for detecting affinity, concentration, size, shape and orientation of biomarkers, while informing the reader about different classes of biomolecules, their optical properties and their importance in label-free clinical diagnostics.This expanded and updated second edition features a new chapter that introduces the reader to advanced in vivo biosensing techniques using WGM microcavities, looking at photothermal sensing, methods for trapping neutral atoms around WGM microcavities, and practical aspects of optoplasmonic sensing. The second Edition now provides a comprehensive introduction to the use of WGM microcavities in physical sensing which includes measurements with frequency combs, macro and micro (one atom) lasers, gyroscopes, optomechanical and parity-time-symmetric sensor devices.Chapter-end problems round out this comprehensive and fundamental textbook, inspiring a host of up-and-coming physicists, bioengineers, and medical professionals to make their own breakthroughs in this blossoming new field. This textbook can be used for both introductory and advanced courses about the modern optics of optical microcavities.
This book provides cutting-edge, up-to-date research findings on the use of bionanocomposites in biodegradable and environmental applications, while also detailing how to achieve bionanocomposites preparation, characteristics, and significant enhancements in physical, chemical, mechanical, thermal properties and applications. This book on biodegradable and environmental properties of bionanocomposites provides a comprehensive and updated review of major innovations in the field of polymer-based bionanocomposites for biodegradable and environmental applications. It covers properties and applications, including the synthesis of polymer-based bionanocomposites from different sources biomaterials-based composites and tactics on the efficacy and major challenges associated with successful scale-up fabrication on bionanocomposites.It is an essential reference for future research in bionanocomposites as topics such as sustainable, biodegradable, and environmental methods for highly innovative and applied materials are current topics of importance. The book covers a wide range of research on bionanocomposite and their biodegradable and environmental applications. Updates on the most relevant polymer-based bionanocomposite and their prodigious potential in the fields of biodegradable and the environment are presented. Leading researchers from industry, academy, government, and private research institutions across the globe contribute to this book. Scientists, engineers, and students with interest in the most important advancements in the field of bionanocomposites involving high-performance bionanocomposites will benefit from this book which is highly application-oriented.
This book presents the basic principles and the latest advances in space archaeology. Following general reviews of the state of the art of Earth observation technologies and archaeology, the book introduces the principles and methods of space archaeology, remote sensing methods for archaeological survey, and integrated archaeological survey methods including geophysics, virtual reality, web technologies, global positioning systems (GPS), geographical information systems (GIS), and big data. The book then presents two chapters on case studies of word heritage sites in Asia, Europe, Africa, and Americas, including three major world heritage sites in China: The Great Wall, Grand Canal, and Silk Road. The last chapter of the book discusses the future of space archaeology. This book has an interdisciplinary appeal and scholars with an interest in cultural heritage and remote sensing technologies for Earth value its contribution.
This book acts as a compilation of papers presented in the 2nd Human Engineering Symposium (HUMENS 2023), held at Pekan, Pahang, Malaysia. The symposium covers the following research topics: ergonomics, biomechanics, sports technology, medical device and instrumentation, artificial intelligence / machine learning, industrial design, rehabilitation, additive manufacturing, modelling and bio-simulation, and signal processing. The articles published will be of interest to researchers and practitioners from the medical device manufacturers, healthcare, rehabilitation and sports technology.
This book describes insight mechanisms for designing molecular probes and methods that these agents can be used for medical diagnosis in preclinical animal models via optical, MRI and PET imaging. The book has a wealth of schemes of synthesis and methods deduced from pioneers in the field, making it possible to immerse into real-world molecular imaging. Written for graduate student training and practitioners, this book will serve as a teaching material and/or reference for anyone interested in exploring the power of chemical synthesis of imaging agents.
This is a graduate-level introduction to quantitative concepts and methods in the science of living systems. It relies on a systems approach for understanding the physical principles operating in biology. Physical phenomena are treated at the appropriate spatio-temporal scale and phenomenological equations are used in order to reflect the system of interest. Biological details enter to the degree necessary for understanding specific processes, but in many cases the approach is not reductionist. This is in line with the approach taken by physics to many other complex systems.The book bridges the gap between graduate students¿ general physics courses and research papers published in professional journals. It gives students the foundations needed for independent research in biological physics and for working in collaborations aimed at quantitative biology and biomedical research. Also included are modern mathematical and theoretical physics methods, giving the student a broad knowledge of tools that can shed light on the sophisticated mechanisms brought forth by evolution in biological systems. The content covers many aspects that have been the focus of active research over the past twenty years, reflecting the authors' experience as leading researchers and teachers in this field.
This book highlights the latest design and development of security issues and various defences to construct safe, secure and trusted Cyber-Physical Systems (CPS). In addition, the book presents a detailed analysis of the recent approaches to security solutions and future research directions for large-scale CPS, including its various challenges and significant security requirements. Furthermore, the book provides practical guidance on delivering robust, privacy, and trust-aware CPS at scale. Finally, the book presents a holistic insight into IoT technologies, particularly its latest development in strategic applications in mission-critical systems, including large-scale Industrial IoT, Industry 4.0, and Industrial Control Systems. As such, the book offers an essential reference guide about the latest design and development in CPS for students, engineers, designers, and professional developers.
"Residual dipolar couplings (RDCs) are NMR measurements widely used to determine structural and dynamic information in small molecules and large macromolecules. This book provides a broad view of RDCs, from basic principles to advanced applications in organic molecules and biomolecules. Exploring the newest developments in RDC measurement and analysis through authoritative accounts written by leaders in the field, this book provides a comprehensive overview on the fundamentals, analysis and applications in one place for the first time. The versatility and accuracy of RDCs have found a large range of applications in NMR, and their measurement and analysis are major research areas. Readers, be they experts or students, will receive a strong understanding of the fundamentals of RDCs and their applications to their research projects."--Back cover.
This contributed volume reviews the latest advances in all the new technologies currently developed for MagnetoEncephaloGraphy (MEG) recordings, as well as sensor technologies and integrated sensor arrays for on-scalp MEG. The book gives an account of the first MEG imaging studies and explores the new field of feasible, experimental paradigms of on-scalp MEG. This is an ideal book for engineers, researchers, and students in the neurosciences interested in MEG imaging.
Radiobiology is a field of medical science that studies the action of ionizing radiation on biological tissues and their cellular and molecular components. Ionizing radiation can cause severe harmful impacts in living beings but it can also provide health benefits for treating cancer and thyrotoxicosis through radiation therapy. Ionizing subatomic particles can be classified into five types, namely, alpha particles, beta particles, positrons, gamma rays and X-rays. The most common impact of ionizing radiation is that it may induce cancer with a latent period of years or decades after exposure. The administration of high doses of ionizing radiation can cause visually dramatic radiation burns and may prove fatal due to acute radiation syndrome. Therefore, controlled doses of ionizing radiation are administered for medical imaging and radiotherapy. There are four factors that determine the success or failure of standard clinical radiation treatment. These factors include repair of DNA damage, redistribution of cells in the cell cycle, repopulation, and reoxygenation of hypoxic tumor areas. This book contains some path-breaking studies in the field of radiobiology. Scientists and students actively engaged in the study of ionizing radiation will find it full of crucial and unexplored concepts.
This detailed volume explores a wide variety of techniques involving optical tweezers, a technology that has become increasingly more accessible to a broad range of researchers. Beginning with recent technical advances, the book continues by covering the application of optical tweezers to study DNA-protein interactions and DNA motors, protocols to perform protein (un)folding experiments, the application of optical tweezers to study actin- and microtubule-associated motor proteins, and well as protocols for investigating the function and mechanical properties of microtubules and intermediate filaments, and more. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Optical Tweezers: Methods and Protocols, Second Edition serves as an ideal resource for expanding the accessibility and use of optical traps by scientists of diverse disciplines.
This book presents contributions from the MICCAI 2022 Computational Biomechanics for Medicine Workshop. "Computational Biomechanics for Medicine - towards translation and better patient outcomes¿ comprises papers accepted for the MICCAI Computational Biomechanics for Medicine Workshop held in 2022 in Singapore. The content focuses on applications of computational biomechanics to computer-integrated medicine, which includes MICCAI topics of Medical Image Computing, Computer-Aided Modeling and Evaluation of Surgical Procedures, and Imaging, Analysis Methods for Image Guided Therapies, Computational Physiology, and Medical Robotics. Specific topics covered include medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, analysis of injury mechanisms, implant and prostheses design, as well as artificial organ design and medical robotics. This book details state-of-the-art progress in the above fields to researchers, students, and professionals.
This book offers the readers an opportunity to acquire the concepts of artificial intelligence (AI) enabled sub-THz systems for novel applications in the biomedical field. The readers will also be inspired to contextualize these applications for solving real life problems such as non-invasive glucose monitoring systems, cancer detection and dental imaging. The introductory section of this book focuses on existing technologies for radio frequency and infrared sensing in biomedical applications, and their limited use in sensing applications, as well as the advantages of using THz technology in this context. This is followed by a detailed comparative analysis of THz electronics technology and other conventional electro optic THz setups highlighting the superior efficiency, affordability and portability of electronics-based THz systems. The book also discusses electronic sub-THz measurement systems for different biomedical applications. The chapters elucidate two major applications where sub-THz provides an edge over existing state of the art techniques used for non-invasive measurement of blood glucose levels and intraoperative assessment of tumor margins. There is a detailed articulation of an application of leveraging machine learning for measurement systems for non-invasive glucose concentration measurement. This helps the reader relate to the output in a more user-friendly format and understand the possible use cases in a more lucid manner. The book is intended to help the reader learn how to build tissue phantoms and characterize them at sub-THz frequencies in order to test the measurement systems. Towards the end of the book, a brief introduction to system automation for biomedical imaging is provided as well for quick analysis of the data. The book will empower the reader to understand and appreciate the immense possibilities of using electronic THz systems in the biomedical field, creating gateways for fueling further research in this area.
Reproducibility in Biomedical Research: Epistemological and Statistical Problems, Second Edition explores the ideas and conundrums inherent in scientific research. This second edition addresses new challenges to reproducibility in biosciences, namely reproducibility of machine learning Artificial Intelligence (AI), reproducibility of translation from research to medical care, and the fundamental challenges to reproducibility. All current chapters are expanded to cover advances in the topics previously addressed. This book provides biomedical researchers with a framework to better understand the reproducibility challenges in the area. Newly introduced interactive exercises and updated case studies help students understand the fundamental concepts involved in the area.
This book gathers selected, extended and revised contributions to the 17th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and the 5th Conference on Imaging and Visualization (CMBBE 2021), held online on September 7-9, 2021, from Bonn, Germany. It reports on cutting-edge models, algorithms and imaging techniques for studying cells, tissues and organs in normal and pathological conditions. It covers numerical and machine learning methods, finite element modeling and virtual reality techniques, applied to understand biomechanics of movement, fluid and soft tissue biomechanics. It also reports on related advances in rehabilitation, surgery and diagnosis. All in all, this book offers a timely snapshot of the latest research and current challenges at the interface between biomedical engineering, computational biomechanics and biological imaging. Thus, it is expected to provide a source of inspiration for future research and cross-disciplinary collaborations.
Quantitative ultrasound (QUS) continues to mature as a research field and is primed to make a swift transition to routine preclinical and clinical applications. This book will serve two main purposes:Advanced education in QUS by providing a complete and thorough review of all theoretical, physical, and engineering aspects of QUS.Review of recent development of QUS by lead contributors in the research field.This 2nd edition will focus on 6 modern research topics related to quantitative ultrasound of soft tissues:Spectral-based methods for tissue characterization, tissue typing, cancer detection, etc.Attenuation estimation for tissue characterization and improving spectral based methodsEnvelope statistics analysis as a means of quantifying and imaging tissue properties.Ultrasound computed tomography for preclinical and clinical imaging.Scanning acoustic microscopy for formingimages of mechanical properties of soft tissues with micron resolution.Phantoms for quantitative ultrasound.
This book develops and describes surgical rationales in the field of reconstructive surgery for upper limb function, both in children and adults suffering from various diseases or trauma leading to a variety of motor and sensory impairments, sometimes associated with growth-related deformities. Every surgical career is a unique living story of learning, performing, questioning, trial and error, and finally success. Every surgeon has to integrate a wealth of information regarding ongoing clinical and research work in a range of disciplines; and with time and experience, a surgical rationale is developed that serves as a baseline and support for their day-to-day work.Following a structure starting with the patient¿s needs, the surgeon and the training, the different tissues are addressed and their pathophysiology discussed in detail, including basic research and surgical expertise. The book is not a surgical compendium, but instead focuses on the detailed baseline behind day-to-day clinical examinations, functional evaluations and surgical work. Readers will learn how the tissues interact, how pathologies change them and interfere with their functions, and how to reverse the pathophysiological sequence by surgical-technical means to improve function.Although the book presents the author¿s personal views, all aspects are explained and debated on the basis of past and current clinical findings, ongoing basic research and input from other disciplines: readers may disagree with certain points, but choose to implement some of the rationales and priorities, incorporate findings from fields they¿d never previously explored, or investigate them further.This book offers an extensive framework of argumentation and is intended to inspire and support readers in terms of decision-making and understanding current or uncommon procedures. Practitioners in the fields of peripheral nerve surgery, reconstructive plastic surgery, upper limb orthopedics, neuropediactrics, biomechanics, physiotherapy and ergotherapy will find the book a valuable asset, and a trusted companion in the daily quest to improve patient care!
This book summarizes the recent advancements for biomechanics of injury and prevention in mechanism, application and developing frontiers. Biomechanics plays an important role in achieving safety, health, comfort, and a high quality of life by revealing injury mechanism and providing prevention methods. The book covers injury and prevention to the entire human body, from head to toe, including injury and prevention in sports, traffic, accident, clinic and so on. In addition, bionics prevention method inspired by woodpecker is also introduced. The book provides the reader with not only the mechanism of injury but also the advanced injury diagnosis, treatment, and prevention devices based on biomechanics.
This book includes high-quality papers presented at the Second International Symposium on Computer Vision and Machine Intelligence in Medical Image Analysis (ISCMM 2021), organized by Computer Applications Department, SMIT in collaboration with Department of Pathology, SMIMS, Sikkim, India, and funded by Indian Council of Medical Research, during 11 - 12 November 2021. It discusses common research problems and challenges in medical image analysis, such as deep learning methods. It also discusses how these theories can be applied to a broad range of application areas, including lung and chest x-ray, breast CAD, microscopy and pathology. The studies included mainly focus on the detection of events from biomedical signals.
This book provides an overview of the contemporary integrated biology approaches for solving structures and understanding mechanisms of complex biological systems.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.