Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Sentiment analysis deals with extracting information about opinions, sentiments, and even emotions conveyed by writers towards topics of interest. Medical sentiment analysis refers to the identification and analysis of sentiments or emotions expressed in free-textual documents with a scope on healthcare and medicine. This fascinating problem offers numerous application areas in the domain of medicine, but also research challenges. The book provides a comprehensive introduction to the topic. The primary purpose is to provide the necessary background on medical sentiment analysis, ranging from a description of the notions of medical sentiment to use cases that have been considered already and application areas of relevance. Medical sentiment analysis uses natural language processing (NLP), text analysis and machine learning to realise the process of extracting and classifying statements regarding expressed opinion and sentiment. The book offers a comprehensive overview on existingmethods of sentiment analysis applied to healthcare resources or health-related documents. It concludes with open research avenues providing researchers indications which topics still have to be developed in more depth.
Covid-19 has hit the world unprepared, as the deadliest pandemic of the century. Governments and authorities, as leaders and decision makers fighting against the virus, enormously tap on the power of AI and its data analytics models for urgent decision supports at the greatest efforts, ever seen from human history. This book showcases a collection of important data analytics models that were used during the epidemic, and discusses and compares their efficacy and limitations.Readers who from both healthcare industries and academia can gain unique insights on how data analytics models were designed and applied on epidemic data. Taking Covid-19 as a case study, readers especially those who are working in similar fields, would be better prepared in case a new wave of virus epidemic may arise again in the near future.
This book collects ground-breaking works on the actual and potential impact of big data and data-integrated design for resilient urban environments, including human- and ecology-centred perspectives. Comprehending and designing for urban social, demographic and environmental change is a complex task. Big data, data structuring, data analysis (i.e. AI and ML) and data-integrated design can play a significant role in advancing approaches to this task. The themes presented in this book include urban adaptation, urban morphology, urban mobility, urban ecosystems, urban climate, urban ecology and agriculture. Given the compound nature of complex sustainability problems, most chapters address the correlation between several of these themes. The book addresses practitioners, researchers and graduate students concerned with the rapidly increasing role of data in developing urban environments.
This volume represents the 20th International Conference on Information Technology - New Generations (ITNG), 2023. ITNG is an annual event focusing on state of the art technologies pertaining to digital information and communications. The applications of advanced information technology to such domains as astronomy, biology, education, geosciences, security, and health care are the among topics of relevance to ITNG. Visionary ideas, theoretical and experimental results, as well as prototypes, designs, and tools that help the information readily flow to the user are of special interest. Machine Learning, Robotics, High Performance Computing, and Innovative Methods of Computing are examples of related topics. The conference features keynote speakers, a best student award, poster award, service award, a technical open panel, and workshops/exhibits from industry, government and academia. This publication is unique as it captures modern trends in IT with a balance of theoretical and experimental work. Most other work focus either on theoretical or experimental, but not both. Accordingly, we do not know of any competitive literature.
In recent years, extensive research has been conducted by eminent mathematicians and engineers whose results and proposed problems are presented in this new volume. It is addressed to graduate students, research mathematicians, physicists, and engineers. Individual contributions are devoted to topics of approximation theory, functional equations and inequalities, fixed point theory, numerical analysis, theory of wavelets, convex analysis, topology, operator theory, differential operators, fractional integral operators, integro-differential equations, ternary algebras, super and hyper relators, variational analysis, discrete mathematics, cryptography, and a variety of applications in interdisciplinary topics. Several of these domains have a strong connection with both theories and problems of linear and nonlinear optimization. The combination of results from various domains provides the reader with a solid, state-of-the-art interdisciplinary reference to theory and problems. Some of the works provide guidelines for further research and proposals for new directions and open problems with relevant discussions.
This second edition textbook covers a coherently organized framework for text analytics, which integrates material drawn from the intersecting topics of information retrieval, machine learning, and natural language processing. Particular importance is placed on deep learning methods. The chapters of this book span three broad categories:1. Basic algorithms: Chapters 1 through 7 discuss the classical algorithms for text analytics such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis.2. Domain-sensitive learning and information retrieval: Chapters 8 and 9 discuss learning models in heterogeneous settings such as a combination of text with multimedia or Web links. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods. 3. Natural language processing: Chapters 10 through 16 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, transformers, pre-trained language models, text summarization, information extraction, knowledge graphs, question answering, opinion mining, text segmentation, and event detection. Compared to the first edition, this second edition textbook (which targets mostly advanced level students majoring in computer science and math) has substantially more material on deep learning and natural language processing. Significant focus is placed on topics like transformers, pre-trained language models, knowledge graphs, and question answering.
Baseball is not the only sport to use "moneyball." American football teams, fantasy football players, fans, and gamblers are increasingly using data to gain an edge on the competition. Professional and college teams use data to help identify team needs and select players to fill those needs. Fantasy football players and fans use data to try to defeat their friends, while sports bettors use data in an attempt to defeat the sportsbooks. In this concise book, Eric Eager and Richard Erickson provide a clear introduction to using statistical models to analyze football data using both Python and R. Whether your goal is to qualify for an entry-level football analyst position, dominate your fantasy football league, or simply learn R and Python with fun example cases, this book is your starting place. Through case studies in both Python and R, you'll learn to: Obtain NFL data from Python and R packages and web scraping Visualize and explore data Apply regression models to play-by-play data Extend regression models to classification problems in football Apply data science to sports betting with individual player props Understand player athletic attributes using multivariate statistics
The surging predictive analytics market is expected to grow from $10.5 billion today to $28 billion by 2026. With the rise in automation across industries, the increase in data-driven decision-making, and the proliferation of IoT devices, predictive analytics has become an operational necessity in today's forward-thinking companies. > Explore ways that predictive analytics can provide direct input back to your business Understand mathematical tools commonly used in predictive analytics Learn the development frameworks used in predictive analytics applications Appreciate the role of predictive analytics in the machine learning process Examine industry implementations of predictive analytics Build, train, and retrain predictive models using Python and TensorFlow
Der Standardkommentar zum Haftungsrecht des Straßenverkehrs erscheint in der Neuauflage in der bewährten systematischen Form, die Handbuch und Kommentar verbindet. Das Werk behandelt sämtliche Tatbestände einer verschuldensunabhängigen Haftung, erläutert die Haftung aus unerlaubter Handlung sowie alle sonstigen Haftungstatbestände und enthält alle Regelungskomplexe, aus denen sich eine Beschränkung oder ein Ausschluss der Haftung herleiten lässt. Jeweils gesonderte Abschnitte sind dem Ersatz des Sachschadens und des Personenschadens in all ihren Ausprägungen gewidmet. Ausführlich behandelt wird der Forderungsübergang auf Privatversicherer, Sozialversicherungs- und Versorgungsträger. Erläuterungen zu den prozessualen, insbesondere beweisrechtlichen Fragen der Verkehrsunfallhaftung schließen das Werk ab. In der Neuauflage wird die Rechtsprechung zum Schadensersatzrecht weiter ausdifferenziert, das neue Versicherungsvertragsgesetz eingearbeitet und der verstärkte Einfluss des internationalen und europäischen Rechts auf das Verkehrshaftungsrecht berücksichtigt.
This book presents data mining methods in the field of healthcare management in a practical way. Healthcare quality and disease prevention are essential in today¿s world. Healthcare management faces a number of challenges, e.g. reducing patient growth through disease prevention, stopping or slowing disease progression, and reducing healthcare costs while improving quality of care. The book provides an overview of current healthcare management problems and highlights how analytics and knowledge management have been used to better cope with them. It then demonstrates how to use descriptive and predictive analytics tools to help address these challenges. In closing, it presents applications of software solutions in the context of healthcare management. Given its scope, the book will appeal to a broad readership, from researchers and students in the operations research and management field to practitioners such as data analysts and decision-makers who work in the healthcare sector.
The U.S. no longer has a free marketplace of ideas. Instead, the marketplace is saturated with covert foreign-backed disinformation. And despite the ethical obligations to act, successive administrations have done nothing. Additionally, the decline in trust has left the door open for populism and illiberalism to enter. Some believe the very fabric of American liberalism is at stake. So what are the ethical responsibilities of the executive branch to counter covert campaigns such as the one coming from Russian-backed disinformation circulating within the US? Why has the government failed to act? So far, the practical challenges are daunting if the executive branch addresses the threat to the homeland. The process to limit this problem is wrought with profound political implications. By its very nature, social media-based disinformation is inextricably linked with existing complex societal cleavages, the First Amendment, and politics. But the failure to do anything is a serious abdication of the government¿s ethical responsibilities. This raises the question of where the line is for government intervention. This work provides answers.
This book addresses different methods and techniques of integration for enhancing the overall goal of data mining. The book is a collection of high-quality peer-reviewed research papers presented in the Sixth International Conference on Computational Intelligence in Data Mining (ICCIDM 2021) held at Aditya Institute of Technology and Management, Tekkali, Andhra Pradesh, India, during December 11-12, 2021. The book addresses the difficulties and challenges for the seamless integration of two core disciplines of computer science, i.e., computational intelligence and data mining. The book helps to disseminate the knowledge about some innovative, active research directions in the field of data mining, machine and computational intelligence, along with some current issues and applications of related topics.
Knowledge Science beschäftigt sich mit Konzepten, Methoden und Prozessen zur systematischen Erzeugung, Extraktion, Speicherung und Bereitstellung von Wissen zur Lösung von Problemen und lässt sich somit dem Wissensmanagement zuordnen. Kognitive Assistenten sorgen dafür, das richtige Wissen zur richtigen Zeit in der richtigen Art und Weise seinen Anwendern und Anwenderinnen bereitzustellen. Damit dies gelingen kann, kommen inzwischen zahlreiche Methoden der Künstlichen Intelligenz (KI) zur Unterstützung unterschiedlicher Aufgaben des Wissensmanagements zum Einsatz.
This book presents a selection of peer-reviewed contributions on the latest developments in time series analysis and forecasting, presented at the 7th International Conference on Time Series and Forecasting, ITISE 2021, held in Gran Canaria, Spain, July 19-21, 2021. It is divided into four parts. The first part addresses general modern methods and theoretical aspects of time series analysis and forecasting, while the remaining three parts focus on forecasting methods in econometrics, time series forecasting and prediction, and numerous other real-world applications. Covering a broad range of topics, the book will give readers a modern perspective on the subject.The ITISE conference series provides a forum for scientists, engineers, educators and students to discuss the latest advances and implementations in the foundations, theory, models and applications of time series analysis and forecasting. It focuses on interdisciplinary research encompassing computer science, mathematics,statistics and econometrics.
This third edition handbook describes in detail the classical methods as well as extensions and novel approaches that were more recently introduced within this field. It consists of five parts: general recommendation techniques, special recommendation techniques, value and impact of recommender systems, human computer interaction, and applications. The first part presents the most popular and fundamental techniques currently used for building recommender systems, such as collaborative filtering, semantic-based methods, recommender systems based on implicit feedback, neural networks and context-aware methods. The second part of this handbook introduces more advanced recommendation techniques, such as session-based recommender systems, adversarial machine learning for recommender systems, group recommendation techniques, reciprocal recommenders systems, natural language techniques for recommender systems and cross-domain approaches to recommender systems. The third part covers a wide perspective to the evaluation of recommender systems with papers on methods for evaluating recommender systems, their value and impact, the multi-stakeholder perspective of recommender systems, the analysis of the fairness, novelty and diversity in recommender systems. The fourth part contains a few chapters on the human computer dimension of recommender systems, with research on the role of explanation, the user personality and how to effectively support individual and group decision with recommender systems. The last part focusses on application in several important areas, such as, food, music, fashion and multimedia recommendation. This informative third edition handbook provides a comprehensive, yet concise and convenient reference source to recommender systems for researchers and advanced-level students focused on computer science and data science. Professionals working in data analytics that are using recommendation and personalization techniques will also find this handbook a useful tool.
This textbook comprehensively covers both fundamental and advanced topics related to data science. Data science is an umbrella term that encompasses data analytics, data mining, machine learning, and several other related disciplines. The chapters of this book are organized into three parts: The first part (chapters 1 to 3) is a general introduction to data science. Starting from the basic concepts, the book will highlight the types of data, its use, its importance and issues that are normally faced in data analytics, followed by presentation of a wide range of applications and widely used techniques in data science. The second part, which has been updated and considerably extended compared to the first edition, is devoted to various techniques and tools applied in data science. Its chapters 4 to 10 detail data pre-processing, classification, clustering, text mining, deep learning, frequent pattern mining, and regression analysis. Eventually, the third part (chapters 11 and 12) present a brief introduction to Python and R, the two main data science programming languages, and shows in a completely new chapter practical data science in the WEKA (Waikato Environment for Knowledge Analysis), an open-source tool for performing different machine learning and data mining tasks. An appendix explaining the basic mathematical concepts of data science completes the book. This textbook is suitable for advanced undergraduate and graduate students as well as for industrial practitioners who carry out research in data science. They both will not only benefit from the comprehensive presentation of important topics, but also from the many application examples and the comprehensive list of further readings, which point to additional publications providing more in-depth research results or provide sources for a more detailed description of related topics. "This book delivers a systematic, carefully thoughtful material on Data Science." from the Foreword by Witold Pedrycz, U Alberta, Canada.
This book constitutes the post proceedings of the 18th International Workshop on Security and Trust Management, STM 2022, co-located with the 27th European Symposium on Research in Computer Security, ESORICS 2022, which took place in Copenhagen, Denmark, in September 2022.The 7 full papers together with 4 short papers included in this volume were carefully reviewed and selected from 18 submissions. The workshop presents papers with topics such as security and trust access control, cryptographic protocols, identity management, security metrics, and privacy.
This open access book constitutes revised selected papers from the International Workshops held at the 4th International Conference on Process Mining, ICPM 2022, which took place in Bozen-Bolzano, Italy, during October 23¿28, 2022.The conference focuses on the area of process mining research and practice, including theory, algorithmic challenges, and applications. The co-located workshops provided a forum for novel research ideas. The 42 papers included in this volume were carefully reviewed and selected from 89 submissions. They stem from the following workshops:¿ 3rd International Workshop on Event Data and Behavioral Analytics (EDBA)¿ 3rd International Workshop on Leveraging Machine Learning in Process Mining (ML4PM)¿ 3rd International Workshop on Responsible Process Mining (RPM) (previously known as Trust, Privacy and Security Aspects in Process Analytics)¿ 5th International Workshop on Process-Oriented Data Science for Healthcare (PODS4H)¿3rd International Workshop on Streaming Analytics for Process Mining (SA4PM)¿ 7th International Workshop on Process Querying, Manipulation, and Intelligence (PQMI)¿ 1st International Workshop on Education meets Process Mining (EduPM)¿ 1st International Workshop on Data Quality and Transformation in Process Mining (DQT-PM)
This open access book provides an introduction and an overview of learning to quantify (a.k.a. ¿quantification¿), i.e. the task of training estimators of class proportions in unlabeled data by means of supervised learning. In data science, learning to quantify is a task of its own related to classification yet different from it, since estimating class proportions by simply classifying all data and counting the labels assigned by the classifier is known to often return inaccurate (¿biased¿) class proportion estimates.The book introduces learning to quantify by looking at the supervised learning methods that can be used to perform it, at the evaluation measures and evaluation protocols that should be used for evaluating the quality of the returned predictions, at the numerous fields of human activity in which the use of quantification techniques may provide improved results with respect to the naive use of classification techniques, and at advanced topics in quantification research.The book is suitable to researchers, data scientists, or PhD students, who want to come up to speed with the state of the art in learning to quantify, but also to researchers wishing to apply data science technologies to fields of human activity (e.g., the social sciences, political science, epidemiology, market research) which focus on aggregate (¿macrö) data rather than on individual (¿micrö) data.
This book constitutes the proceedings of the 20th International Conference on Relational and Algebraic Methods in Computer Science, RAMiCS 2023, which took place in Augsburg, Germany, during April 3¿6, 2023.The 17 papers presented in this book were carefully reviewed and selected from 26 submissions.They deal with the development and dissemination of relation algebras, Kleene algebras, and similar algebraic formalisms. Topics covered range from mathematical foundations to applications as conceptual and methodological tools in computer science and beyond.Apart from the submitted articles, this volume features the abstracts of the presentations of the three invited speakers.
This book discusses the two fundamental elements that underline the science and design of artificial intelligence (AI) systems: the learning and acquisition of knowledge from observational data, and the reasoning of that knowledge together with whatever information is available about the application at hand. It then presents a mathematical treatment of the core issues that arise when unifying first-order logic and probability, especially in the presence of dynamics, including physical actions, sensing actions and their effects. A model for expressing causal laws describing dynamics is also considered, along with computational ideas for reasoning with such laws over probabilistic logical knowledge.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.