Udvidet returret til d. 31. januar 2025

Bøger af Aldo Andreotti

Filter
Filter
Sorter efterSorter Populære
  • af Wilhelm Stoll & Aldo Andreotti
    492,95 kr.

  • af Aldo Andreotti
    284,95 kr.

    We consider in Rn a differential operator P(D), P a polynomial, with constant coefficients. Let U be an open set in Rn and A(U) be the space of real analytic functions on U. We consider the equation P(D)u=f, for f in A(U) and look for a solution in A(U). Hormander proved a necessary and sufficient condition for the solution to exist in the case U is convex. From this theorem one derives the fact that if a cone W admits a Phragmen-Lindeloff principle then at each of its non-zero real points the real part of W is pure dimensional of dimension n-1. The Phragmen-Lindeloff principle is reduced to the classical one in C. In this paper we consider a general Hilbert complex of differential operators with constant coefficients in Rn and we give, for U convex, the necessary and sufficient conditions for the vanishing of the H1 groups in terms of the generalization of Phragmen-Lindeloff principle.

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.