Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Ancient Indian physics, based on Vedic philosophy, combines modern science with Vedic philosophy to explain atomic structure, chemical reactions, and technology. For personal and professional development, Jantar Mantar observatories emphasize advanced scientific knowledge and interdisciplinary studies.
L'antica fisica indiana, basata sulla filosofia vedica, combina la scienza moderna con la filosofia vedica per spiegare la struttura atomica, le reazioni chimiche e la tecnologia. Per lo sviluppo personale e professionale, gli osservatori Jantar Mantar enfatizzano le conoscenze scientifiche avanzate e gli studi interdisciplinari.
La physique indienne ancienne, basée sur la philosophie védique, combine la science moderne avec la philosophie védique pour expliquer la structure atomique, les réactions chimiques et la technologie. Pour le développement personnel et professionnel, les observatoires Jantar Mantar mettent l'accent sur les connaissances scientifiques avancées et les études interdisciplinaires.
A antiga fÃsica indiana, baseada na filosofia védica, combina a ciência moderna com a filosofia védica para explicar a estrutura atômica, as reações quÃmicas e a tecnologia. Para o desenvolvimento pessoal e profissional, os observatórios Jantar Mantar enfatizam o conhecimento cientÃfico avançado e os estudos interdisciplinares.
Die alte indische Physik basiert auf der vedischen Philosophie und kombiniert moderne Wissenschaft mit der vedischen Philosophie, um die Atomstruktur, chemische Reaktionen und Technologie zu erklären. Für die persönliche und berufliche Weiterentwicklung legen die Observatorien von Jantar Mantar Wert auf fortgeschrittene wissenschaftliche Kenntnisse und interdisziplinäre Studien.
Graphene's superior carrier mobility, optical transparency, and thermal conductivity make it a one-of-a-kind material for creating 2D-physics devices in electrical and optoelectronics. Top-down and bottom-up physical and chemical processes are used to create graphene layers. Polycrystalline Cu foils are better at controlling large area expansion and layer number while having low defects. Wet transfer was used to transfer graphene from one side to quartz and suspend graphene on a TEM Cu grid. Low-temperature PVD was used to create various ZnO nanorods, nanowires, and nanoribbons on single- and multilayer graphene.
Multijunction solar cells can be developed using III-V compounds, which have a high photovoltaic efficiency and have already been shown to be more efficient than traditional solar cells. In designs where sub cells with high material quality and high internal quantum efficiency can be used, III-V compound multijunction solar cells can achieve ultrahigh efficiency performance. However, using lattice-matched compound semiconductor materials, it is impossible to achieve the ideal multijunction cell band gap classification. As a result, current compound semiconductor solar cell design approaches rely heavily on either lattice matched designs or metamorphic growth, which results in a lack of design flexibility or lower material quality than necessary. Direct bonded interconnects between sub cells of a multijunction cell can be used as a substitute for the defect network required for lattice mismatch space to tunnel junction interfaces.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.