Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Un motore diesel monocilindrico a quattro tempi (Kirloskar) è stato testato a pieno carico con il carburante miscelato alla velocità nominale di 1500 giri/min. Come carburante sono stati utilizzati MOME, MOEE e WCME miscelati al diesel in proporzioni del 5%, 10%, 15% e 20% in volume e diesel puro. Le prestazioni del motore (consumo specifico di carburante, efficienza termica al freno e potenza al freno) e le emissioni di scarico (HC, CO, CO2 e NOx) sono state misurate per valutare e calcolare il comportamento del motore diesel alimentato a biodiesel. I risultati mostrano che l'efficienza termica al freno del diesel è maggiore a tutti i carichi, seguita dalle miscele di estere metilico di Mahua e diesel. Sperimentalmente, l'efficienza termica al freno massima e il consumo specifico di carburante minimo sono stati riscontrati per miscele fino al 20% di estere metilico di olio di Mahua a tutti i carichi tra le miscele. Il consumo specifico di carburante è risultato addirittura inferiore a quello del diesel convenzionale per miscele fino al B20. Le emissioni di CO sono risultate inferiori a quelle del diesel, mentre si è registrato un leggero aumento dell'opacità dei fumi e degli NOx. Le riduzioni del consumo specifico di carburante al freno e delle emissioni di CO rendono la miscela di biodiesel B20 un carburante alternativo adatto al motore diesel.
Ein Einzylinder-Viertakt-Dieselmotor (Kirloskar) wurde unter Volllast mit dem gemischten Kraftstoff bei einer Nenndrehzahl von 1500 U/min getestet. Als Kraftstoff wurden MOME, MOEE und WCME in Anteilen von 5, 10, 15 und 20 Volumenprozent mit Diesel und reinem Diesel gemischt. Die Motorleistung (spezifischer Kraftstoffverbrauch, thermischer Bremswirkungsgrad und Bremsleistung) und die Abgasemissionen (HC, CO, CO2 und NOx) wurden gemessen, um das Verhalten des mit Biodiesel betriebenen Dieselmotors zu bewerten und zu berechnen. Die Ergebnisse zeigen, dass der thermische Wirkungsgrad des Dieselmotors bei allen Lasten höher ist, gefolgt von Mischungen aus Mahua-Methylester und Diesel. Experimentell wurden der maximale thermische Wirkungsgrad und der minimale spezifische Kraftstoffverbrauch für Mischungen bis zu 20 % Mahua-Ölmethylester bei allen Lasten ermittelt. Der spezifische Kraftstoffverbrauch war bei Mischungen bis B20 sogar niedriger als der von herkömmlichem Diesel. Die CO-Emissionen waren geringer als bei Diesel, während die Rauchtrübung und die NOx-Emissionen leicht zunahmen. Die Verringerung des spezifischen Kraftstoffverbrauchs und der CO-Emissionen machen die Biodieselmischung B20 zu einem geeigneten alternativen Kraftstoff für Dieselmotoren.
Un moteur diesel monocylindre à quatre temps (Kirloskar) a été testé à pleine charge avec le carburant mélangé à la vitesse nominale de 1500 tr/min. Le MOME, le MOEE et le WCME ont été mélangés au diesel dans des proportions de 5 %, 10 %, 15 % et 20 %, en volume, et du diesel pur a été utilisé comme carburant. Les performances du moteur (consommation spécifique de carburant, rendement thermique au frein et puissance au frein) et les émissions de gaz d'échappement (HC, CO, CO2 et NOx) ont été mesurées afin d'évaluer et de calculer le comportement du moteur diesel fonctionnant au biodiesel. Les résultats montrent que le rendement thermique au frein du diesel est plus élevé à toutes les charges, suivi par les mélanges d'ester méthylique de Mahua et de diesel. Expérimentalement, l'efficacité thermique maximale du frein et la consommation spécifique minimale de carburant ont été trouvées pour des mélanges allant jusqu'à 20 % d'ester méthylique d'huile de Mahua à toutes les charges parmi les mélanges. La consommation spécifique de carburant s'est avérée encore plus faible que celle du diesel conventionnel pour les mélanges allant jusqu'à B20. Les émissions de CO se sont révélées inférieures à celles du diesel, tandis que l'opacité des fumées et les NOx ont légèrement augmenté. Les réductions de la consommation spécifique de carburant au frein et des émissions de CO ont fait du mélange de biodiesel B20 un carburant alternatif approprié pour les moteurs diesel.
Um motor diesel monocilíndrico a quatro tempos (Kirloskar) foi testado a plena carga com o combustível misturado à velocidade nominal de 1500 rpm. Foram utilizados como combustível MOME, MOEE e WCME misturados com gasóleo em proporções de 5%, 10%, 15% e 20%, em volume, e gasóleo puro. O desempenho do motor (consumo específico de combustível, eficiência térmica de travagem e potência de travagem) e as emissões de escape (HC, CO, CO2 e NOx) foram medidos para avaliar e calcular o comportamento do motor diesel a funcionar com biodiesel. Os resultados mostram que a eficiência térmica de travagem do diesel é mais elevada em todas as cargas, seguida das misturas de éster metílico de Mahua e diesel. Experimentalmente, a eficiência térmica máxima do travão e o consumo específico mínimo de combustível foram encontrados para misturas até 20% de éster metílico de óleo de mahua a todas as cargas entre as misturas. Verificou-se que o consumo específico de combustível era ainda mais baixo do que o do gasóleo convencional para misturas até B20. As emissões de CO foram inferiores às do gasóleo, tendo-se registado um ligeiro aumento da opacidade dos fumos e dos NOx. As reduções no consumo específico de combustível na travagem e nas emissões de CO tornaram a mistura de biodiesel B20 um combustível alternativo adequado para o motor diesel.
The book is designed mainly for the students of engineering graduates. It covers all the topics of the subjects. The course is designed in a simple and precise manner. For complete knowledge and more study about the subject, students are advised to follow the books referred to in the references.
Document from the year 2022 in the subject Computer Sciences - Artificial Intelligence, grade: B.Tech, Amity University (Amity School of Engineering and Technology), language: English, abstract: The study material of Machine Learning is designed mainly for the students of engineering graduates. The syllabus is taken from Guru Gobind Singh Indraprastha University Delhi. It covers mainly all the topics of the subjects. The course is designed in a simple and precise manner. For complete knowledge and more study about the subject, students are advised to follow the books referred to in the references.Machine learning is a subfield of computer science, but is often also referred to as predictive analytics, or predictive modeling. Its goal and usage is to build new and/or leverage existing algorithms to learn from data, in order to build generalizable models that give accurate predictions, or to find patterns, particularly with new and unseen similar data.
Document from the year 2023 in the subject Computer Sciences - Artificial Intelligence, Amity University (Amity School of Engineering and Technology), course: Information Security, Machine Learning, language: English, abstract: Information security is a challenging issue with the high growth rate of the internet. Cryptography, Steganography, and Digital watermarking techniques are widely used for information security for different purposes. In this book, we discuss various methods of hiding information using machine learning techniques. Chapter one is the foundation of the research conducted during the period and dis-cussed in this book. It also overview the problem statement, methodology, objectives, achievements and motivation of the proposed study. It also provides an overview of the organization of this book. In chapter two, the main focus is to review the existing digital image watermarking techniques based on artificial neural network, support vector regression, support vector machines, genetic algorithm and combination of these machine learning algorithms called hybrid techniques based image watermarking. The reviews of these watermarking schemes give the effective solution for copyright protection applications. It is observed that machine learning algorithms are used to reduce the trade-off between robustness and imperceptibility in spatial as well as transform domain. In addition to robustness and imperceptibility, some of the researchers have focused on security of the watermark and how much information is stored in multimedia contents.
The study material of Algorithm Design and Analysis is designed mainly for the students of engineering graduates. The syllabus is taken from Guru Gobind Singh Indraprastha University Delhi. It covers mainly all the topics of the subjects. The course is designed in a simple and precise manner.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.