Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Computer Vision and Machine Intelligence for Renewable Energy Systems offers a practical, systemic guide to the use of computer vision as an innovative tool to support renewable energy integration.This book equips readers with a variety of essential tools and applications: Part I outlines the fundamentals of computer vision and its unique benefits in renewable energy system models compared to traditional machine intelligence: minimal computing power needs, speed, and accuracy even with partial data. Part II breaks down specific techniques, including those for predictive modeling, performance prediction, market models, and mitigation measures. Part III offers case studies and applications to a wide range of renewable energy sources, and finally the future possibilities of the technology are considered. The very first book in Elsevier’s cutting-edge new series Advances in Intelligent Energy Systems, Computer Vision and Machine Intelligence for Renewable Energy Systems provides engineers and renewable energy researchers with a holistic, clear introduction to this promising strategy for control and reliability in renewable energy grids.
Water, our planet's life force, faces multiple challenges in the 21st century, including surging global demand, shifting climate patterns, and the urgent need for sustainable management. Guidance, knowledge, and hope is sharply needed in academia and technology industries, and Innovations in Machine Learning and IoT for Water Management is a formidable resource to provide these necessities. This book delves into the dynamic synergy of Artificial Intelligence (AI), Machine Learning (ML), and the Internet of Things (IoT), ushering in a new era of water resource stewardship. This book embarks on a journey through the frontiers of AI and IoT, unveiling their transformative impact on water management. From the vantage point of satellite imagery analysis, it scrutinizes the Earth's vital signs, unlocking crucial insights into water resources. It chronicles the rise of AI-powered predictive analytics, a revolutionary force propelling precision water usage and conservation. This book explains how IoT can be an effective tool to increase intelligence of our water systems. The book meticulously navigates through domains as diverse as aquifer monitoring, hydropower generation optimization, and predictive analytics for water consumption. This book caters to a diverse audience, from water management experts and environmental scientists to data science aficionados and IoT enthusiasts. Engineers seeking to reimagine the future of water systems, technology enthusiasts eager to delve into AI's potential, and individuals impassioned by preserving water will all find a well-needed resource in these pages.
In the last two decades, machine learning has been dramatically developed and is still experiencing a fast and ever-lasting change in paradigm, methodology, applications, and other aspects. This book offers a compendium of current and emerging machine learning paradigms in healthcare informatics and reflects on the diversity and complexity.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.