Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book features chapters written by renowned scientists from various parts of the world, providing an up-to-date survey of submanifold theory, spanning diverse topics and applications. The book covers a wide range of topics such as Chen¿Ricci inequalities in differential geometry, optimal inequalities for Casorati curvatures in quaternion geometry, conformal ¿-Ricci¿Yamabe solitons, submersion on statistical metallic structure, solitons in f(R, T)-gravity, metric-affine geometry, generalized Wintgen inequalities, tangent bundles, and Lagrangian submanifolds.Moreover, the book showcases the latest findings on Pythagorean submanifolds and submanifolds of four-dimensional f-manifolds. The chapters in this book delve into numerous problems and conjectures on submanifolds, providing valuable insights for scientists, educators, and graduate students looking to stay updated with the latest developments in the field. With its comprehensive coverage and detailed explanations, this book is an essential resource for anyone interested in submanifold theory.
This book contains an up-to-date survey and self-contained chapters on contact slant submanifolds and geometry, authored by internationally renowned researchers. The notion of slant submanifolds was introduced by Prof. B.Y. Chen in 1990, and A. Lotta extended this notion in the framework of contact geometry in 1996. Numerous differential geometers have since obtained interesting results on contact slant submanifolds. The book gathers a wide range of topics such as warped product semi-slant submanifolds, slant submersions, semi-slant I -, hemi-slant I -Riemannian submersions, quasi hemi-slant submanifolds, slant submanifolds of metric f-manifolds, slant lightlike submanifolds, geometric inequalities for slant submanifolds, 3-slant submanifolds, and semi-slant submanifolds of almost paracontact manifolds. The book also includes interesting results on slant curves and magnetic curves, where the latter represents trajectories moving on a Riemannian manifold under the action of magnetic field. It presents detailed information on the most recent advances in the area, making it of much value to scientists, educators and graduate students.
This book contains an up-to-date survey and self-contained chapters on complex slant submanifolds and geometry, authored by internationally renowned researchers. The book discusses a wide range of topics, including slant surfaces, slant submersions, nearly Kaehler, locally conformal Kaehler, and quaternion Kaehler manifolds. It provides several classification results of minimal slant surfaces, quasi-minimal slant surfaces, slant surfaces with parallel mean curvature vector, pseudo-umbilical slant surfaces, and biharmonic and quasi biharmonic slant surfaces in Lorentzian complex space forms. Furthermore, this book includes new results on slant submanifolds of para-Hermitian manifolds. This book also includes recent results on slant lightlike submanifolds of indefinite Hermitian manifolds, which are of extensive use in general theory of relativity and potential applications in radiation and electromagnetic fields. Various open problems and conjectures on slant surfaces in complex space forms are also included in the book. It presents detailed information on the most recent advances in the area, making it valuable for scientists, educators and graduate students.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.