Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book develops integral identities, mostly involving multidimensional functions and infinite limits of integration, whose evaluations are intractable by common means. It exposes a methodology based on the multivariate power substitution and its variants, assisted by the software tool Mathematica. The approaches introduced comprise the generalized method of exhaustion, the multivariate power substitution and its variants, and the use of permutation symmetry to evaluate definite integrals, which are very important both in their own right, and as necessary intermediate steps towards more involved computation.A key tenet is that such approaches work best when applied to integrals having certain characteristics as a starting point. Most integrals, if used as a starting point, will lead to no result at all, or will lead to a known result. However, there is a special class of integrals (i.e., innovative integrals) which, if used as a starting point for such approaches, will lead to new and useful results, and can also enable the reader to generate many other new results that are not in the book.The reader will find a myriad of novel approaches for evaluating integrals, with a focus on tools such as Mathematica as a means of obtaining useful results, and also checking whether they are already known. Results presented involve the gamma function, the hypergeometric functions, the complementary error function, the exponential integral function, the Riemann zeta function, and others that will be introduced as they arise. The book concludes with selected engineering applications, e.g., involving wave propagation, antenna theory, non-Gaussian and weighted Gaussian distributions, and other areas.The intended audience comprises junior and senior sciences majors planning to continue in the pure and applied sciences at the graduate level, graduate students in mathematics and the sciences, and junior and established researchers in mathematical physics, engineering, and mathematics. Indeed, the pedagogical inclination of the exposition will have students work out, understand, and efficiently use multidimensional integrals from first principles.
This volume features recent development and techniques in evolution equations by renown experts in the field. Each contribution emphasizes the relevance and depth of this important area of mathematics and its expanding reach into the physical, biological, social, and computational sciences as well as into engineering and technology.The reader will find an accessible summary of a wide range of active research topics, along with exciting new results. Topics include: Impulsive implicit Caputo fractional q-difference equations in finite and infinite dimensional Banach spaces; optimal control of averaged state of a population dynamic model; structural stability of nonlinear elliptic p(u)-Laplacian problem with Robin-type boundary condition; exponential dichotomy and partial neutral functional differential equations, stable and center-stable manifolds of admissible class; global attractor in Alpha-norm for some partial functional differential equations of neutral and retarded type; and more.Researchers in mathematical sciences, biosciences, computational sciences and related fields, will benefit from the rich and useful resources provided. Upper undergraduate and graduate students may be inspired to contribute to this active and stimulating field.
This highly multidisciplinary volume contains contributions from leading researchers in STEAM-H disciplines (Science, Technology, Engineering, Agriculture, Mathematics and Health). The volume explores new frontiers in multidisciplinary research, including: the mathematics of cardiac arrhythmia; brain research on working memory; penalized ordinal regression to classify melanoma skin samples; forecasting of time series data; dynamics of niche models; analysis of chemical moieties as anticancer agents; study of gene locus control regions; qualitative mathematical modelling; convex quadrics and group circle systems; remanufacturing planning and control; complexity reduction of functional differential equations; computation of viscous interfacial motion; and differentiation in human pluripotent stem cells. An extension of a seminar series at Virginia State University, the collection is intended to foster student interest and participation in interdisciplinary research and to stimulate new research. The content will be of interest to a broad spectrum of scientists, mathematicians and research students working in interdisciplinary fields including the biosciences, mathematics, engineering, neurosciences and behavioral sciences.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.