Vi bøger
Levering: 1 - 2 hverdage

Bøger af Cihan Tepedelenlioglu

Filter
Filter
Sorter efterSorter Populære
  • af Xue Zhang
    319,95 kr.

    In sensor network applications, measured data are often meaningful only when the location is accurately known. In this booklet, we study research problems associated with node localization in wireless sensor networks. We describe sensor network localization problems in terms of a detection and estimation framework and we emphasize specifically a cooperative process where sensors with known locations are used to localize nodes at unknown locations. In this class of problems, even if the location of a node is known, the wireless links and transmission modalities between two nodes may be unknown. In this case, sensor nodes are used to detect the location and estimate pertinent data transmission activities between nodes. In addition to the broader problem of sensor localization, this booklet studies also specific localization measurements such as time of arrival (TOA), received signal strength (RSS), and direction of arrival (DOA). The sequential localization algorithm, which uses a subset of sensor nodes to estimate nearby sensor nodes' locations is discussed in detail. Extensive bibliography is given for those readers who want to delve further into specific topics.

  • af Henry Braun
    442,95 kr.

    Compressed sensing (CS) allows signals and images to be reliably inferred from undersampled measurements. Exploiting CS allows the creation of new types of high-performance sensors including infrared cameras and magnetic resonance imaging systems. Advances in computer vision and deep learning have enabled new applications of automated systems. In this book, we introduce reconstruction-free compressive vision, where image processing and computer vision algorithms are embedded directly in the compressive domain, without the need for first reconstructing the measurements into images or video. Reconstruction of CS images is computationally expensive and adds to system complexity. Therefore, reconstruction-free compressive vision is an appealing alternative particularly for power-aware systems and bandwidth-limited applications that do not have on-board post-processing computational capabilities. Engineers must balance maintaining algorithm performance while minimizing both the number of measurements needed and the computational requirements of the algorithms. Our study explores the intersection of compressed sensing and computer vision, with the focus on applications in surveillance and autonomous navigation. Other applications are also discussed at the end and a comprehensive list of references including survey papers are given for further reading.

  • af Sunil Rao
    442,95 kr.

    The efficiency of solar energy farms requires detailed analytics and information on each panel regarding voltage, current, temperature, and irradiance. Monitoring utility-scale solar arrays was shown to minimize the cost of maintenance and help optimize the performance of the photo-voltaic arrays under various conditions. We describe a project that includes development of machine learning and signal processing algorithms along with a solar array testbed for the purpose of PV monitoring and control. The 18kW PV array testbed consists of 104 panels fitted with smart monitoring devices. Each of these devices embeds sensors, wireless transceivers, and relays that enable continuous monitoring, fault detection, and real-time connection topology changes. The facility enables networked data exchanges via the use of wireless data sharing with servers, fusion and control centers, and mobile devices. We develop machine learning and neural network algorithms for fault classification. In addition, we use weather camera data for cloud movement prediction using kernel regression techniques which serves as the input that guides topology reconfiguration. Camera and satellite sensing of skyline features as well as parameter sensing at each panel provides information for fault detection and power output optimization using topology reconfiguration achieved using programmable actuators (relays) in the SMDs. More specifically, a custom neural network algorithm guides the selection among four standardized topologies. Accuracy in fault detection is demonstrate at the level of 90+% and topology optimization provides increase in power by as much as 16% under shading.

  • af Henry Braun
    322,95 kr.

    Although the solar energy industry has experienced rapid growth recently, high-level management of photovoltaic (PV) arrays has remained an open problem. As sensing and monitoring technology continues to improve, there is an opportunity to deploy sensors in PV arrays in order to improve their management. In this book, we examine the potential role of sensing and monitoring technology in a PV context, focusing on the areas of fault detection, topology optimization, and performance evaluation/data visualization. First, several types of commonly occurring PV array faults are considered and detection algorithms are described. Next, the potential for dynamic optimization of an array's topology is discussed, with a focus on mitigation of fault conditions and optimization of power output under non-fault conditions. Finally, monitoring system design considerations such as type and accuracy of measurements, sampling rate, and communication protocols are considered. It is our hope that the benefits of monitoring presented here will be sufficient to offset the small additional cost of a sensing system, and that such systems will become common in the near future. Table of Contents: Introduction / Overview of Photovoltaics / Causes Performance Degradation and Outage / Fault Detection Methods / Array Topology Optimization / Monitoring of PV Systems / Summary

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.