Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Model Generation in Electronic Design covers a wide range of model applications and research. The book begins by describing a model generator to create component models. It goes on to discuss ASIC design and ASIC library generation. This section includes chapters on the requirements for developing and ASIC library, a case study in which VITAL is used to create such a library, and the analysis and description of the accuracy required in modeling interconnections in ASIC design. Other chapters describe the development of thermal models for electronic devices, the development of a set of model packages for VHDL floating point operations, a techniques for model validation and verification, and a tool for model encryption. Model Generation in Electronic Design is an essential update for users, vendors, model producers, technical managers, designers and researchers working in electronic design.
too vast, too complex, too grand ... for description. John Wesley Powell-1870 (discovering the Grand Canyon) VHDL is a big world. A beginner can be easily disappointed by the generality of this language. This generality is explained by the large number of domains covered - from specifications to logical simulation or synthesis. To the very beginner, VHDL appears as a "e;kit"e;. He is quickly aware that his problem may be solved with VHDL, but does not know how. He does not even know how to start. In this state of mind, all the constraints that can be set to his modeling job, by using a subset of the language or a given design methodology, may be seen as a life preserver. The success of the introduction of VHDL in a company depends on solutions to many questions that should be answered months before the first line of code is written: * Why choose VHDL? * Which VHDL tools should be chosen? * Which modeling methodology should be adopted? * How should the VHDL environment be customized? * What are the tricks? Where are the traps? * What are the differences between VHDL and other competing HDLs? Answers to these questions are organized according to different concerns: buying the tools, organizing the environment, and designing. Decisions taken in each of these areas may have many consequences on the way to the acceptance and efficiently use of VHDL in a company.
Hardware description languages (HDL) such as VHDL and Verilog have found their way into almost every aspect of the design of digital hardware systems. Since their inception they gradually proved to be an essential part of modern design methodologies and design automation tools, ever exceeding their original goals of being description and simulation languages. Their use for automatic synthesis, formal proof, and testing are good examples. So far, HDLs have been mainly dealing with digital systems. However, integrated systems designed today require more and more analog parts such as A/D and D/A converters, phase locked loops, current mirrors, etc. The verification of the complete system therefore asks for the use of a single language. Using VHDL or Verilog to handle analog descriptions is possible, as it is shown in this book, but the real power is coming from true mixed-signal HDLs that integrate discrete and continuous semantics into a unified framework. Analog HDLs (AHDL) are considered here a subset of mixed-signal HDLs as they intend to provide the same level of features as HDLs do but with a scope limited to analog systems, possibly with limited support of discrete semantics. Analog and Mixed-Signal Hardware Description Languages covers several aspects related to analog and mixed-signal hardware description languages including: The use of a digital HDL for the description and the simulation of analog systems The emergence of extensions of existing standard HDLs that provide true analog and mixed-signal HDLs. The use of analog and mixed-signal HDLs for the development of behavioral models of analog (electronic) building blocks (operational amplifier, PLL) and for the design of microsystems that do not only involve electronic parts. The use of a front-end tool that eases the description task with the help of a graphical paradigm, yet generating AHDL descriptions automatically. Analog and Mixed-Signal Hardware Description Languages is the first book to show how to use these new hardware description languages in the design of electronic components and systems. It is necessary reading for researchers and designers working in electronic design.
Models in System Design tracks the general trend in electronics in terms of size, complexity and difficulty of maintenance. System design is by nature combined with prototyping, mixed domain design, and verification, and it is no surprise that today's modeling and models are used in various levels of system design and verification. In order to deal with constraints induced by volume and complexity, new methods and techniques have been defined. Models in System Design provides an overview of the latest modeling techniques for use by system designers. The first part of the book considers system level design, discussing such issues as abstraction, performance and trade-offs. There is also a section on automating system design. The second part of the book deals with some of the newest aspects of embedded system design. These include co-verification and prototyping. Finally, the book includes a section on the use of the MCSE methodology for hardware/software co-design. Models in System Design will help designers and researchers to understand these latest techniques in system design and as such will be of interest to all involved in embedded system design.
Modeling in Analog Design highlights some of the most pressing issues in the use of modeling techniques for design of analogue circuits. Using models for circuit design gives designers the power to express directly the behaviour of parts of a circuit in addition to using other pre-defined components. There are numerous advantages to this new category of analog behavioral language. In the short term, by favouring the top-down design and raising the level of description abstraction, this approach provides greater freedom of implementation and a higher degree of technology independence. In the longer term, analog synthesis and formal optimisation are targeted. Modeling in Analog Design introduces the reader to two main language standards: VHDL-A and MHDL. It goes on to provide in-depth examples of the use of these languages to model analog devices. The final part is devoted to the very important topic of modeling the thermal and electrothermal aspects of devices. This book is essential reading for analog designers using behavioral languages and analog CAD tool development environments who have to provide the tools used by the designers.
An open process of restandardization, conducted by the IEEE, has led to the definitions of the new VHDL standard.
Circuit Synthesis with VHDL is an introduction to the use of VHDL logic (RTL) synthesis tools in circuit design. Circuit Synthesis with VHDL is essential reading for all students, researchers, design engineers and managers working with VHDL in a synthesis environment.
Other chapters describe the development of thermal models for electronic devices, the development of a set of model packages for VHDL floating point operations, a techniques for model validation and verification, and a tool for model encryption.
The success of the introduction of VHDL in a company depends on solutions to many questions that should be answered months before the first line of code is written: * Why choose VHDL? * Which VHDL tools should be chosen? * How should the VHDL environment be customized? * What are the differences between VHDL and other competing HDLs?
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.