Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This popular textbook provides a detailed examination of the central assertions of measure theory in n-dimensional Euclidean space. The book emphasizes the roles of Hausdorff measure and capacity in characterizing the fine properties of sets and functions.
This book provides a detailed examination of the central assertions of measure theory in n-dimensional Euclidean space. It emphasizes the roles of Hausdorff measure and the capacity in characterizing the fine properties of sets and functions. The book covers theorems and differentiation in Rn , Hausdorff measures, area and coarea formulas for Lipschitz mappings and related change-of-variable formulas, and Sobolev functions and functions of bounded variation. This second edition includes countless improvements in notation, format, and clarity of exposition. Also new are several sections describing the ¿-¿ theorem, weak compactness criteria in L1, and Young measure methods for weak convergence. In addition, the bibliography has been updated.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.