Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The book concerns with solving about 650 ordinary and partial differential equations. Each equation has at least one solution and each solution has at least one coloured graph. The coloured graphs reveal different features of the solutions. Some graphs are dynamical as for Clairaut differential equations. Thus, one can study the general and the singular solutions. All the equations are solved by Mathematica. The first chapter contains mathematical notions and results that are used later through the book. Thus, the book is self-contained that is an advantage for the reader. The ordinary differential equations are treated in Chapters 2 to 4, while the partial differential equations are discussed in Chapters 5 to 10. The book is useful for undergraduate and graduate students, for researchers in engineering, physics, chemistry, and others. Chapter 9 treats parabolic partial differential equations while Chapter 10 treats third and higher order nonlinear partial differential equations, both with modern methods. Chapter 10 discusses the Korteweg-de Vries, Dodd-Bullough-Mikhailov, Tzitzeica-Dodd-Bullough, Benjamin, Kadomtsev-Petviashvili, Sawada-Kotera, and Kaup-Kupershmidt equations.
Introducing the features of Mathematica(R), this book continues with more complex material, including many examples and illustrations of how Mathematica(R) can be used. Topics among others include sorting algorithms; functions (planar and solid); ordinary differential equations; dealing with the Pi number; and optimal control problems.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.