Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The deployment of surveillance systems has captured the interest of both the research and the industrial worlds in recent years. The aim of this effort is to increase security and safety in several application domains such as national security, home and bank safety, traffic monitoring and navigation, tourism, and military applications. The video surveillance systems currently in use share one feature: A human operator must monitor them at all times, thus limiting the number of cameras and the area under surveillance and increasing cost. A more advantageous system would have continuous active warning capabilities, able to alert security officials during or even before the happening of a crime. Existing automated surveillance systems can be classified into categories according to:The environment they are primarily designed to observe;The number of sensors that the automated surveillance system can handle;The mobility of sensor.The primary concern of this book is surveillance in an outdoor urban setting, where it is not possible for a single camera to observe the complete area of interest. Multiple cameras are required to observe such large environments. This book discusses and proposes techniques for development of an automated multi-camera surveillance system for outdoor environments, while identifying the important issues that a system needs to cope with in realistic surveillance scenarios. The goal of the research presented in this book is to build systems that can deal effectively with these realistic surveillance needs.
Motion-based recognition deals with the recognition of an object and/or its motion, based on motion in a series of images. In this approach, a sequence containing a large number of frames is used to extract motion information. The advantage is that a longer sequence leads to recognition of higher level motions, like walking or running, which consist of a complex and coordinated series of events. Unlike much previous research in motion, this approach does not require explicit reconstruction of shape from the images prior to recognition. This book provides the state-of-the-art in this rapidly developing discipline. It consists of a collection of invited chapters by leading researchers in the world covering various aspects of motion-based recognition including lipreading, gesture recognition, facial expression recognition, gait analysis, cyclic motion detection, and activity recognition. Audience: This volume will be of interest to researchers and post- graduate students whose work involves computer vision, robotics and image processing.
By minimizing the rank of the matrix containing observations drawn from images, the authors demonstrate how to solve four fundamental computer vision problems, including video denosing, background subtraction, motion estimation, and activity recognition.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.